
Digital Logic Systems
Recitation 4: Propositional Logic and Logisim Software

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 26, 2019

1/20



Propositional Logic

Formulas vs Functions

Boolean Formulas are strings made of variables, constants and
connectives. Whereas Boolean Functions are mathematical objects
described by truth tables. We will learn how to express boolean
functions by formulas.

τ vs τ̂

τ(x):U → {0,1} is a simple truth assignment to a variable x .
τ̂(φ):BF → {0,1} is a truth value of a formula φ, which is
evaluated by applying τ to its variables and computing the EVAL
algorithm.

2/20



Connectives

Equivalent connective symbols

(A +B) = (A ∨B) = (A or B)

(A ⋅B) = (A ∧B) = (A and B)

(¬B) = (not(B)) = (B̄)

(A xor B) = (A⊕B)

Parantheses

((A ∨ C) ∧ (¬B)) = ((A + C) ⋅ (B̄))

We sometimes omit parentheses from formulas if their parse tree is
obvious. When parenthesis are omitted, one should use precedence
rules as in arithmetic, e.g., a ⋅ b + c ⋅ d = ((a ⋅ b) + (c ⋅ d)).

3/20



Useful tautologies

4/20



Tautologies

Example

Prove that the following formulas are tautologies: (i) addition:

φ1
△

= (X → (X +Y )), and (ii) simplification: φ2
△

= ((X ⋅Y )→ X ).

Proof.

The proof is by truth tables, The following figure depicts the tables
of both formulas. Note that the row that represents τ̂v(φi) is a
constant Boolean function, i.e., ∀ v ∈ {0,1}2 ∶ τ̂v(φi) = 1.

X Y X +Y φ1
0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 1

X Y X ⋅Y φ2
0 0 0 1
1 0 0 1
0 1 0 1
1 1 1 1

Table: The truth tables of the addition and the simplification tautologies.

5/20



The Logisim Software

Can be downloaded from:
http://www.cburch.com/logisim/

Input ports to assign inputs to your circuit.

Output ports to gain the results.

Light green = ‘1’.
Dark green = ‘0’.

Combinational Gates (AND,MUX,XOR,...) implement
boolean functions.

Project→Analyze Circuit - generate the truth tables

Modular Design - We compose Boolean functions to
“construct” new ones. Use multiple circuits hierarchically.
You will learn this principle as Substitution.

Labels must be assigned to I/O ports!

“Minimization heuristics”...can be found in the book.

6/20

http://www.cburch.com/logisim/


The Logisim Software

Example

Consider the following boolean formula φ:
φ = (x2 ∨ x1)⊕ (¬x0 ∧ x1)
Implement the boolean function Bφ ∶ {0,1}3 → {0,1} that
corresponds to the formula φ.

Parse tree of a formula φ

7/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim Example - Bφ implementation

8/20



Logisim - Wiring Library

1 Bus - a set of parallel wires

2 Splitters - are used to split/collect a bus into individual wires

3 Tunnels - a.k.a. net labeling to avoid drawing connections.

9/20



Logisim - Wiring Library

1 Bus - a set of parallel wires

2 Splitters - are used to split/collect a bus into individual wires

3 Tunnels - a.k.a. net labeling to avoid drawing connections.

9/20



Logisim - Wiring Library

1 Bus - a set of parallel wires

2 Splitters - are used to split/collect a bus into individual wires

3 Tunnels - a.k.a. net labeling to avoid drawing connections.

9/20



Logisim - Wiring Library

1 Bus - a set of parallel wires

2 Splitters - are used to split/collect a bus into individual wires

3 Tunnels - a.k.a. net labeling to avoid drawing connections.

9/20



Modular Design in Logisim

10/20



Modular Design in Logisim

10/20



Modular Design in Logisim

10/20



Modular Design in Logisim

10/20



Modular Design in Logisim

10/20



Exporting Circuit as an image without a truth table

Use the “File→Export Image” option

11/20



Exporting Circuit as an image with a truth table

Open the “Project→Analyze Circuit”→“Table” then print screen:

12/20



Adjusting the circuit name

In the project submission guidelines you are required to rename
your top module to a specific name.

13/20



Multi-bit IO ports

From now on, do not use multiple single-bit ports when indexing is
required.
Inputs: a,b, c ∈ {0,1}, then it is OK to place 3 single-bit inputs:

Input: a[2 ∶ 0] ∈ {0,1}3, then use a bus!

14/20



Complete Set of Connectives

A Boolean formula expresses some Boolean function.

We deal with the following question: Which sets of
connectives enable us to express every Boolean function?

Recall the following definitions.

Definition

A Boolean function B ∶ {0,1}n → {0,1} is expressible by
BF({X1, . . . ,Xn},C) if there exists a formula
p ∈ BF({X1, . . . ,Xn},C) such that B = Bp.

Definition

A set C of connectives is complete if every Boolean function
B ∶ {0,1}n → {0,1} is expressible by BF({X1, . . . ,Xn},C).

Theorem

The set C = {¬,and,or} is a complete set of connectives.

15/20



C = {and,or} is not Complete Set of Connectives

Theorem

The set C = {and,or} is not a complete set of connectives.

Proof.

We prove that the Boolean function not is not expressible by
BF({X1},C).

How? we prove that every ϕ ∈ BF({X1},C), Bϕ is either the
function 0, 1, or I , where I is the identity function.

Proof by a complete induction on the size of the parse tree of
the Boolean formula ϕ (next slide).

Since not is not the function 0, 1, or I , it follows that not is
not expressible by BF({X1},C), as required.

16/20



C = {and,or} is not Complete Set of Connectives

Proof by a complete induction on the size of the parse tree of a
formula ϕ.

Base: For trees of a size 1, ϕ can be one of the following
options: {0,1, x}. The corresponding Bϕ(x) can be either
const 0 or const 1 or the identity function x.

Induction Hypothesis: For a formula ϕ with a parse tree of
a size n and lower, the corresponding Bϕ(x) can be either
const 0 or const 1 or the identity function x.

17/20



C = {and,or} is not Complete Set of Connectives

Proof by a complete induction on the size of the parse tree of a
formula ϕ.

Induction Step: We shall prove that for a formula ϕ (with a
larger parse tree) the corresponding Bϕ(x) can be either const
0 or const 1 or the identity function x.

Important tip: We observe the construction of tree of ϕ and
understand that we have to break the proof into 2 cases.
Where each case corresponds to using a different connective.

Induction Step Proof:
1 ϕ = ϕ1 ⋅ ϕ2. In this case, Bϕ = BAND(Bϕ1(x),Bϕ2(x))
2 ϕ = ϕ1 + ϕ2. In this case, Bϕ = BOR(Bϕ1(x),Bϕ2(x))

The formulas ϕ1, ϕ2 are smaller formulas and thus we can
exploit the induction hypothesis. By induction hypothesis,
Bϕ1 , (x),Bϕ2(x) can be either 0,1 or x .
Let’s take a look at all the possible functions Bϕ...

18/20



C = {and,or} is not Complete Set of Connectives

Table: Given Bϕ1 ,Bϕ2 , the following table describes what will be the Bϕ

for the both cases

Bϕ1 Bϕ2 Bϕ = BAND(Bϕ1 ,Bϕ2) Bϕ = BOR(Bϕ1 ,Bϕ2)

0 0 0 0
0 1 0 1
0 x 0 x
1 0 0 1
1 1 1 1
1 x x 1
x 0 0 x
x 1 x 1
x x x x

We showed that in both cases, Bϕ ∈ {0,1, x} Therefore, we proved
the induction step.

19/20



C = {↓} is a Complete Set of Connectives

Example

Prove that {↓} is a complete set of connectives. Where the
connective ↓ corresponds to a boolean function NOR2(b1,b2).

Proof.

We need to show that some other complete set of connectives
can be expresses using only ↓.

Let’s express the complete set {¬,∨,∧} using {↓}

¬x can be expressed by x ↓ x or by x ↓ 0 (see truth table)

x ∧ y ⇔ ¬¬(x ∧ y) ⇔ ¬(¬x ∨ ¬y) ⇔ (¬x ↓ ¬y)
⇔ (x ↓ x) ↓ (y ↓ y)

x ∨ y ⇔ ¬¬(x ∨ y) ⇔ ¬(x ↓ y)
⇔ (x ↓ y) ↓ (x ↓ y)

20/20



C = {↓} is a Complete Set of Connectives

Example

Prove that {↓} is a complete set of connectives. Where the
connective ↓ corresponds to a boolean function NOR2(b1,b2).

Proof.

We need to show that some other complete set of connectives
can be expresses using only ↓.

Let’s express the complete set {¬,∨,∧} using {↓}

¬x can be expressed by x ↓ x or by x ↓ 0 (see truth table)

x ∧ y ⇔ ¬¬(x ∧ y) ⇔ ¬(¬x ∨ ¬y) ⇔ (¬x ↓ ¬y)
⇔ (x ↓ x) ↓ (y ↓ y)

x ∨ y ⇔ ¬¬(x ∨ y) ⇔ ¬(x ↓ y)
⇔ (x ↓ y) ↓ (x ↓ y)

20/20



C = {↓} is a Complete Set of Connectives

Example

Prove that {↓} is a complete set of connectives. Where the
connective ↓ corresponds to a boolean function NOR2(b1,b2).

Proof.

We need to show that some other complete set of connectives
can be expresses using only ↓.

Let’s express the complete set {¬,∨,∧} using {↓}

¬x can be expressed by x ↓ x or by x ↓ 0 (see truth table)

x ∧ y ⇔ ¬¬(x ∧ y) ⇔ ¬(¬x ∨ ¬y) ⇔ (¬x ↓ ¬y)
⇔ (x ↓ x) ↓ (y ↓ y)

x ∨ y ⇔ ¬¬(x ∨ y) ⇔ ¬(x ↓ y)
⇔ (x ↓ y) ↓ (x ↓ y)

20/20



C = {↓} is a Complete Set of Connectives

Example

Prove that {↓} is a complete set of connectives. Where the
connective ↓ corresponds to a boolean function NOR2(b1,b2).

Proof.

We need to show that some other complete set of connectives
can be expresses using only ↓.

Let’s express the complete set {¬,∨,∧} using {↓}

¬x can be expressed by x ↓ x or by x ↓ 0 (see truth table)

x ∧ y ⇔ ¬¬(x ∧ y) ⇔ ¬(¬x ∨ ¬y) ⇔ (¬x ↓ ¬y)
⇔ (x ↓ x) ↓ (y ↓ y)

x ∨ y ⇔ ¬¬(x ∨ y) ⇔ ¬(x ↓ y)
⇔ (x ↓ y) ↓ (x ↓ y)

20/20


