Digital Logic Systems

Recitation 11: Synchronous Circuits: Design, Simulation and
Timing Analysis

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 27, 2019

1/18

Synchronous Circuits - Attributes

@ Consist of combinational circuits and flip-flops (FFs)

@ Can contain cycles, as long as the underlying combinational
circuits are still acyclic.

© Must contain a special CLK input, which is fed to all FFs

Synchronous Circuit

Combinational Sl
— X e Y PY(t)
X(t) Circuit
NS
Q D
D-FF
CLK(t)

2/18

Synchronous Circuits - Time

@ We introduce discrete time

@ The time is dictated by a very special signal CLKe{0,1}. This
signal is given automatically, you don't have to worry about
generating it. Just don't forget to connect it to the required
elements (FFs).

© Each rising-edge of CLK advances the time to the next clock
cycle.

© The inputs are now time-dependent: No more X, Y,Z. In
synchronous circuits we deal with X(t), Y(t),Z(t). The
"user" of a synchronous circuit can change these inputs every
clock cycle.

© Don’t confuse between the time indices and the string indices.

e X[i](t) is the value of the binary string X at index i at time t.

@ X[2](3) is the value of the binary string X at index 2 at time
3.

3/18

Synchronous Circuits Design

Step 1 - Functional design
Assume zero-delay and design a functionally correct circuit.

@ Option 1: Ad-hoc design - use flip-flops and combinational
logic.
@ Option 2: Finite-State-Machine (FSM) design & synthesis.
Simulate the design with respect to zero delay model.
Step 2 - Timing Analysis
Remove the zero-delay assumption, don't think of correctness.
Calculate Min-® - the minimal clock cycle of your circuit.

4/18

The Zero Delay Model

Simplified model for specifying and simulating the functionality of
circuits with flip-flops.

@ Transitions of all signals are instantaneous.
@ Combinational gates: t,q = teont = 0.
© Flip-flops satisfy:
Loy = tjs1 — &,
thold = teont = tpa = 0.

@ This allows us to specify the functionality of a flip-flop in the
zero delay model as follows:

Q(t+1) = D(t).

5/18

Clock enabled flip-flops (zero-delay model)

A clock enabled flip-flop is defined as follows.
Inputs: D(t),CE(t) € {0,1} and a clock CLK.
Output: Q(t) € {0,1}.

Functionality:

_|D(t) ifcE(t)=1
Qe+1)= {Q(t) if oR(t) = 0.
[
(;];EK: CE-FF

6/18

Parallel Load Register (zero-delay model)

An n-bit parallel load register is specified as follows.
Inputs: e D[n-1:0](t),
e CE(t), and
@ a clock CLK.
Output: Q[n—1:0](t).

D[n-1:0](t) ifce(t)=1
Q[n-1:0](t) if ce(t)=0.

Functionality: Q[n—-1:0](t+1) = {

An n-bit parallel load register is simply built from n CEFFs.
D[3:0]
4

CLK — CE-FF(4)

CE —e

4

Q[3:0] 7/18

Shift Register (zero-delay model)

Definition

A shift register of n bits is defined as follows.
Inputs: D[0](t) and a clock CLK.
Output: Q[n-1](¢t).

Functionality: Q[n-1](t+ n) = D[0](t).

D1 Do)
1 1
} FFq CLK } FFo
1 1
Q2] Q] Q[o]

Figure: A 4-bit shift register. Functionality: Q[3](t+4) = D[0](¢t)

8/18

Shift Registers - simulation

CLK —&

CLK —&

CLK —&~

CLK —&

A WODN R O~

9/18

Simulation Algorithm

Algorithm 1 SIM(C, So, {IN;}"3) - An algorithm for simulating
a synchronous circuit C with respect to an initialization Sy and a
sequence of inputs {IN; 7:_01.

@ Construct the combinational circuit C’ obtained from C by
stripping away the flip-flops.
@ Fori=0ton-1do:

@ Simulate the combinational circuit C’ with input values
corresponding to S; and IN;. Namely, every input gate in C
feeds a value according to IN;, and every Q-port of a flip-flop
feeds a value according to S;. For every sink z in C’, let z
denote the value fed to z according to this simulation.

@ For every Q-port S of a flip-flop, define S;,1 < NS;, where NS
denotes the D-port of the flip-flop.

10/18

Example: Sequential Adder

A sequential adder is defined as follows.

Inputs: A(t), B(t), reset(t) and a clock signal CLK, where
A(t), B(t), reset(t) € {0,1}.
Output: S(t) € {0,1}.
Functionality: The reset signal is an initialization signal that
satisfies:

1 ift=0,

reset(t) = {o ift>0

Then, for every t >0,
(A[t:0]) + (B[t:0]) = (S[t:0]) (mod 2t*1).

11/18

Example: Sequential Adder (Ad-hoc design)

reset

Q
D

CLK —&

FF

|

Figure: A synchronous circuit that implements a sequential adder.

Cout

A B
)

Full-Adder
c S

S

12/18

Logisim Synchronous Simulation

® 6 6 6 o

Use components: " Wiring—Clock” ; "Memory—D Flip-Flop'
One clock cycle consists of 1 rising edge and 1 falling edge
One clock cycle = 2 "ticks”

Logisim respects the Zero-Delay model

Use " Simulate—Logging” to record the simulation log.

Es Logisim: main of SequentialAdder - o “
File Edit Project Simulate Window Help

ka2 e D>

EEYE]s]
1%

SequentialAdder™
main

Arithmetic

B EHEE;

Input/Output
ase

Circuit: main
Gircuit Name |main
Shared Label
Shared Lab... East
Shared Lab... |SansSerif ...

100% =

13/18

Minimum Clock Period in a Synchronous Circuit

Claim (Minimum Clock Period)
d > tpd(FFl) + tpd(C) + tsu(FFg)

CLK CLK

" combinational D (¢
Dy(t) —e| FFy Qot) > circuit 1t o FFy e Q1(t)

4 thota(FF1)

[teont(FF1)

t) I
Qolf) Tl FF)
cont(C)_’ pd(C tsu(FF)
Ds(t)

:
thota(FFy) 14/18

Ad-hoc design question

Design a synchronous circuit S(n) according to the following

specification. Let n =2k,

Input: n sequential inputs {X; ?:_01, where each X; € {0,1}*.
Assume that the inputs are valid and stable from

clock cycle 0 to clock cycle n.

Output: A single bit Y.
Functionality: The output Y should satisfy in every clock cycle

t>n:
1 ifall {X;}7-} are distinct
Y(£) - il
0 otherwise.
Note that n strings are distinct if no two are equal.

Your design should meet the following goals:
@ Number of flip-flops should be at most n- k + 1.
@ The minimum clock period should be O(k) = O(log n).
15/18

Auxiliary Circuits

Not-Equal(k) - combinational circuit that outputs ne =1 iff A+ B
Ak-1:0] B[k-1:0]
k k

Alk-1:0] B[k-1:0]
vy
ac

>,
()

XOR(K)
ne

Stopper(k) - synchronous circuit that outputs Y (t) =1 for
t<n-1and then y(t) =0 for t > n.

CLK—|
Stopper(k)

l

3

v

INC(K)

v

OR-Tree (k)

ce

Dik10]
Register (k)

Qlk-1:0]

| S—

16/18

Naive Solution

k k Kk

K
X[k-1:0] ~—»|Register(k) Register(k) 000

#1

#2

k

Register(k)
#(n-1)

L

Comparison ALL possible PAIRS
using n(n-1)/2 "Not-Equal(k)" circuits

n(n-1)/2
A 4

CLK]
Stopper(k)

AND-Tree (n(n-1)/2)

CLK—]

CE

Using n- k + 1 flip-flops. Min-® = ©(log(n))

17/18

Decoder-Based Solution

X[k-1:0]
k
CLKA ¢
Stopper(k) Decoder(k)
*)
manee d[n—¢1:0]
d[n-1] d[n-2] d[o]

CLK— CLK

D D
CLKH]
CE-FF %E-FF 000 %E-FF

main_ce _{ce Q main_ce _|ce Q main_ce _fce Q

4 v
q[n-1] aln-2] q[o]
g[n-1:0]

v

Y
Using n + k flip-flops. Min-® = ©(log(n)) 18/18

