
Digital Logic Systems
Recitation 11: Synchronous Circuits: Design, Simulation and

Timing Analysis

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 27, 2019

1/18



Synchronous Circuits - Attributes

1 Consist of combinational circuits and flip-flops (FFs)

2 Can contain cycles, as long as the underlying combinational
circuits are still acyclic.

3 Must contain a special CLK input, which is fed to all FFs

2/18



Synchronous Circuits - Time

1 We introduce discrete time
2 The time is dictated by a very special signal CLK∈{0,1}. This

signal is given automatically, you don’t have to worry about
generating it. Just don’t forget to connect it to the required
elements (FFs).

3 Each rising-edge of CLK advances the time to the next clock
cycle.

4 The inputs are now time-dependent: No more X ,Y ,Z . In
synchronous circuits we deal with X (t),Y (t),Z(t). The
”user” of a synchronous circuit can change these inputs every
clock cycle.

5 Don’t confuse between the time indices and the string indices.

Example

X [i](t) is the value of the binary string X at index i at time t.

X [2](3) is the value of the binary string X at index 2 at time
3.

3/18



Synchronous Circuits Design

Step 1 - Functional design
Assume zero-delay and design a functionally correct circuit.

Option 1: Ad-hoc design - use flip-flops and combinational
logic.

Option 2: Finite-State-Machine (FSM) design & synthesis.

Simulate the design with respect to zero delay model.

Step 2 - Timing Analysis
Remove the zero-delay assumption, don’t think of correctness.
Calculate Min-Φ - the minimal clock cycle of your circuit.

4/18



The Zero Delay Model

Simplified model for specifying and simulating the functionality of
circuits with flip-flops.

1 Transitions of all signals are instantaneous.

2 Combinational gates: tpd = tcont = 0.

3 Flip-flops satisfy:

tsu = ti+1 − ti ,

thold = tcont = tpd = 0.

4 This allows us to specify the functionality of a flip-flop in the
zero delay model as follows:

Q(t + 1) = D(t).

5/18



Clock enabled flip-flops (zero-delay model)

Definition

A clock enabled flip-flop is defined as follows.

Inputs: D(t),ce(t) ∈ {0,1} and a clock clk.

Output: Q(t) ∈ {0,1}.

Functionality:

Q(t + 1) =

⎧⎪⎪
⎨
⎪⎪⎩

D(t) if ce(t) = 1

Q(t) if ce(t) = 0.

6/18



Parallel Load Register (zero-delay model)

Definition

An n-bit parallel load register is specified as follows.

Inputs: D[n − 1 ∶ 0](t),
ce(t), and
a clock clk.

Output: Q[n − 1 ∶ 0](t).

Functionality: Q[n − 1 ∶ 0](t + 1) =

⎧⎪⎪
⎨
⎪⎪⎩

D[n − 1 ∶ 0](t) if ce(t) = 1

Q[n − 1 ∶ 0](t) if ce(t) = 0.

An n-bit parallel load register is simply built from n CEFFs.

4

clk

ce
ce-ff(4)

D[3 : 0]

Q[3 : 0]

4

7/18



Shift Register (zero-delay model)

Definition

A shift register of n bits is defined as follows.

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).

Functionality: Q[n − 1](t + n) = D[0](t).

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

Figure: A 4-bit shift register. Functionality: Q[3](t + 4) = D[0](t)

8/18



Shift Registers - simulation

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

t D[0] Q[3 ∶ 0]

0 1 0000
1 1 0001
2 1 0011
3 0 0111
4 1 1110

9/18



Simulation Algorithm

Algorithm 1 SIM(C ,S0,{INi}
n−1
i=0 ) - An algorithm for simulating

a synchronous circuit C with respect to an initialization S0 and a
sequence of inputs {INi}

n−1
i=0 .

1 Construct the combinational circuit C ′ obtained from C by
stripping away the flip-flops.

2 For i = 0 to n − 1 do:
1 Simulate the combinational circuit C ′ with input values

corresponding to Si and INi . Namely, every input gate in C
feeds a value according to INi , and every Q-port of a flip-flop
feeds a value according to Si . For every sink z in C ′, let zi
denote the value fed to z according to this simulation.

2 For every Q-port S of a flip-flop, define Si+1 ← NSi , where NS
denotes the D-port of the flip-flop.

10/18



Example: Sequential Adder

Definition

A sequential adder is defined as follows.

Inputs: A(t),B(t), reset(t) and a clock signal clk, where
A(t),B(t), reset(t) ∈ {0,1}.

Output: S(t) ∈ {0,1}.

Functionality: The reset signal is an initialization signal that
satisfies:

reset(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if t = 0,

0 if t > 0.

Then, for every t ≥ 0,
⟨A[t ∶ 0]⟩ + ⟨B[t ∶ 0]⟩ = ⟨S[t ∶ 0]⟩ (mod 2t+1).

11/18



Example: Sequential Adder (Ad-hoc design)

clk
D

Q
ff

A

SC

BCin

Full-Adder

S
Cout

reset

Figure: A synchronous circuit that implements a sequential adder.

12/18



Logisim Synchronous Simulation

Use components: ”Wiring→Clock” ; ”Memory→D Flip-Flop”
One clock cycle consists of 1 rising edge and 1 falling edge
One clock cycle = 2 ”ticks”
Logisim respects the Zero-Delay model
Use ”Simulate→Logging” to record the simulation log.

13/18



Minimum Clock Period in a Synchronous Circuit

Claim (Minimum Clock Period)

Φ ≥ tpd(FF1) + tpd(C) + tsu(FF2)

clk

ff1

clk

ff2

combinational
circuit
C

D0(t) Q1(t)
D1(t)Q0(t)

pd(C)cont(C)

clk

D0(t)
tsu(FF1)

thold(FF1)

D1(t)

tpd(FF1)
Q0(t)

tcont(FF1)

thold(FF2)

tsu(FF2)

Ci Ai Ci+1 Ai+1

14/18



Ad-hoc design question

Design a synchronous circuit S(n) according to the following
specification. Let n = 2k .

Input: n sequential inputs {Xi}
n−1
i=0 , where each Xi ∈ {0,1}k .

Assume that the inputs are valid and stable from
clock cycle 0 to clock cycle n.

Output: A single bit Y .

Functionality: The output Y should satisfy in every clock cycle
t ≥ n:

Y (t) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if all {Xi}
n−1
i=0 are distinct

0 otherwise.

Note that n strings are distinct if no two are equal.

Your design should meet the following goals:
1 Number of flip-flops should be at most n ⋅ k + 1.
2 The minimum clock period should be O(k) = O(log n).

15/18



Auxiliary Circuits

Not-Equal(k) - combinational circuit that outputs ne = 1 iff A ≠ B

XOR(k)

OR-Tree (k)

k

k

k

A[k-1:0] B[k-1:0]

ne

k k

A[k-1:0] B[k-1:0]

ne

Stopper(k) - synchronous circuit that outputs Y (t) = 1 for
t ≤ n − 1 and then y(t) = 0 for t ≥ n.

Stopper(k)
CLK

INC(k)

OR-Tree (k) Register (k)

Y

D[k-1:0]

Q[k-1:0]

CE

CLK

k

kk

k

16/18



Naive Solution

Stopper(k)

CE-FF
CE

Y

CLK

CLK

X[k-1:0] Register(k)
#1

Register(k)
#2

Register(k)
#(n-1)

Comparison ALL possible PAIRS
using n(n-1)/2 "Not-Equal(k)" circuits

AND-Tree (n(n-1)/2)

 n(n-1)/2

kkk kk

kk k k k

Using n ⋅ k + 1 flip-flops. Min-Φ = Θ(log(n))
17/18



Decoder-Based Solution

Stopper(k)

Y

CLK

X[k-1:0]

Decoder(k)

AND-Tree (n)

 n

k

n

d[n-1:0]

CE-FF
CE

CLK

Q

D

d[n-1]

main_ce

q[n-1]

CE-FF
CE

CLK

Q

D

main_ce

q[n-2]

d[n-2]

CE-FF
CE

CLK

Q

D

main_ce

q[0]

d[0]

main_ce

q[n-1:0]

Using n + k flip-flops. Min-Φ = Θ(log(n)) 18/18


