
Recitation 2 – Part A

Assembly (MIPS):
Translation from C to Assembly

(Simple blocks, conditions, loops)

Chapter 2 — Instructions: Language of the Computer — 2

Overview of the course

◼ Computer Abstractions and Technology

◼ Instructions: Language of the Computer

◼ Arithmetic for Computers

◼ The Processor

◼ Large and Fast: Exploiting Memory Hierarchy

◼ Storage and Other I/O Topics

Definitions

◼ ISA – ISA is an abstract interface between the hardware and the

lowest level software that encompasses all the information

necessary to write a machine language program that will run

correctly.

◼ Instruction Set – The vocabulary of commands understood by a

given architecture. The words of computers language are called

instruction.

Above this machine level is assembly language, a language that

human can read.

◼ Assembler – The assembler translate the instructions into the

binary numbers that machines can understood.

◼ Clock Rate – Amount of cycles per second.

◼ Compilation – Compilers-The translation of a program written in a

high-level language, such as C,C++,JAVA onto instructions that

the hardware can execute.

Chapter 2 — Instructions: Language of the Computer — 3

Basic premise

◼ C code allows us to preform several operations in one

line. The processer on the other hand, can’t preform

several operation in one cycle. This is why assembly

code must contain one operation per line.

◼ Let’s look at a c code:

𝑓 = 𝑔 + ℎ − 𝑖 + 𝑗 ;

◼ In order to complete this calculation we first need to put

the variables in memory the processor can use. Next we

need to preform two sets of addition and place the

results in temporary memory. Then we need to subtract

the results we got and put the result in the memory that

belong to f.

Chapter 2 — Instructions: Language of the Computer — 4

MIPS32 ISA

Chapter 2 — Instructions: Language of the Computer — 5

In MIPS32, each instruction in 32-bit long.

We can classify the instructions into 3 groups:

◼ R-Format Instructions:

◼ I-Format Instructions:

◼ J-Format Instructions: (will be discussed next week)

opcode rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

opcode rs rt Constant/Address (immediate)

6 bits 5 bits 5 bits 16 bits

opcode Address

6 bits 26 bits

Example:

add $rd, $rs, $rt

Example:

lw $rt, const($rs)

Basic MIPS instructions

◼ R-Format Instructions
◼ add $reg1, $reg2, $reg3

◼ sub $reg1, $reg2, $reg3

◼ mul $reg1, $reg2, $reg3

◼ and $reg1, $reg2, $reg3

◼ or $reg1, $reg2, $reg3

◼ nor $reg1, $reg2, $reg3

◼ slt $reg1, $reg2, $reg3

◼ sll $reg1, $reg2, const

◼ I-Format Instructions
◼ addi $reg1, $reg2, const

◼ sw $reg1, const($reg2)

◼ lw $reg1, const($reg2)

◼ beq $reg1, $reg2, Label

◼ bne $reg1, $reg2, Label

◼ slti $reg1, $reg2, const

Chapter 2 — Instructions: Language of the Computer — 6

MIPS – Design Principles

◼ “Smaller is faster”:

The size of a register in the MIPS architecture is

32 bits. Groups of 32 bits occur so frequently

that they are given the name word in the MIPS

architecture.

◼ A very large number of registers may increase

the clock cycle time simply because it takes

electronic signals longer when they must travel

farther…

◼ In MIPS we have 32 registers (of 32 bits each).

Chapter 2 — Instructions: Language of the Computer — 7

MIPS Registers

Chapter 2 — Instructions: Language of the Computer — 8

Name Register Number USE

$zero / $0 0 The constant value 0

$at 1 Assembler Temporary

$v0 - $v1 2 - 3 Values for Function Results

$a0 - $a3 4 – 7 Arguments for Functions

$t0 - $t7 8 – 15 Temporaries

$s0 - $s7 16 – 23 Saved Temporaries

$t8 - $t9 24 – 25 Temporaries

$k0 - $k1 26 - 27 Reserved for OS Kernel

$gp 28 Global Pointer

$sp 29 Stack Pointer

$fp 30 Frame Pointer

$ra 31 Return Address

Data transfer instructions

Chapter 2 — Instructions: Language of the Computer — 9

◼ To access a word in memory, the instruction must supply the

memory address.

◼ In MIPS, the memory is byte-addressable (meaning: each

address in the memory holds a single byte of data).

◼ Also, words must start at address that are multiple of 4. This

requirement is called an alignment restriction.

◼ Example: Assume A is an array of integers, its address is saved

in register $s3. How can we access A[8]?

◼ Option 1: lw $t0, 32($s3)

◼ Option 2: addi $t0, $s3, 32

lw $t0, 0($t0)

◼ Note: The constant in a data transfer instruction (32) is called the offset, and

the register added to form the address ($s3) is called the base register.

Question 1 – Arrays & Offsets

Chapter 2 — Instructions: Language of the Computer — 10

Consider the following C code: (Assume b and c are arrays

of integers):

a = b[10] – c[5];

b[7] = a – c[3];

Where the addresses of b[0] and c[0] are stored in $s0, $s1

correspondingly and the value of a is in $s2. Translate the

code to assembly.

Question 1 – Solution

Chapter 2 — Instructions: Language of the Computer — 11

a = b[10] – c[5];

b[7] = a – c[3];

The addresses of b[0] and c[0] are stored in $s0, $s1
correspondingly and the value of a is in $s2.

MIPS Code:

CommentInstruction

load b[10] to $t0lw $t0, 40($s0)

load c[5] to $t1lw $t1, 20($s1)

put b[10]-c[5] in $s2sub $s2, $t0, $t1

load c[3] to $t0lw $t0, 12($s1)

put a-c[3] in $t0sub $t0, $s2, $t0

store the result in b[7]sw $t0, 28($s0)

Question 2 – C to MIPS

Chapter 2 — Instructions: Language of the Computer — 12

Consider the following C code (Assume a, b, c and d are

integers):

a = 4*d + 2*(b+c);

1. Translate the code to MIPS assembly given that a, b, c

and d are stored in $s0-$s3 (Without using MUL

instructions).

2. What problems could arise from this implementation?

3. The registers $s0-$s3 now contain the addresses of a,

b, c and d. Translate the code to MIPS assembly.

Question 2 – Solution

Chapter 2 — Instructions: Language of the Computer — 13

a = 4*d + 2*(b+c);

1. Translate the code to MIPS assembly given that a, b, c and d are

stored in $s0-$s3 (Without using MUL instructions).

MIPS Code:

◼ Each line of assembly language can contain at most one instruction.

◼ It’s the compiler’s job to associate program variables with registers.
◼ During the course (HW, exam) YOU will be the compiler and you will be responsible to choose the

registers correctly.

put b+c in $toadd $t0, $s1, $s2

Multiply b+c by 2sll $t0, $t0, 1

put 4*d in $t1sll $t1, $s3, 2

put 4*d + 2*(b+c) back in $s0
(The new value of a)

add $s0, $t1, $t0

Question 2 – Solution

Chapter 2 — Instructions: Language of the Computer — 14

2. What problems could arise from this implementation?

If d or b+c are too large, using sll could cause a mistake!

For example:

If b + c =

0100 0001 1011 0011 0010 0000 1001 0001 (1,102,258,32110)

by shifting it left we will get

1000 0011 0110 0110 0100 0001 0010 0010

which is negative number!

Question 2 – Solution

Chapter 2 — Instructions: Language of the Computer — 15

3. The registers $s0-$s3 now contain the addresses of a, b, c and d.

Translate the code to MIPS assembly.

MIPS Code:

load b to $t1lw $t1, 0($s1)

load c to $t2lw $t2, 0($s2)

load d to $t3lw $t3, 0($s3)

put b + c in $t0add $t0, $t1, $t2

Multiply b + c by 2sll $t0, $t0, 1

put 4*d in $t1sll $t1, $t3, 2

put 4*d + 2*(b+c) in $ t0add $t0, $t1, $t0

store the answer back in it’s
address ($s0)

sw $t0, 0($s0)

Question 3 – MIPS to C

Chapter 2 — Instructions: Language of the Computer — 16

Consider the following Assembly MIPS code:

1. Assume that $s3 and $s4 contain the addresses of variables K,L.

Translate the code to C.

2. Consider the same code with the line: “j LOOP” at the end. Translate

the code with this modification.

add $t0, $s0, $s1LOOP:

add $t1, $s0, $s2

add $t0, $t0, $t1

addi $t0, $t0, -3

sll $t0, $t0, 3

lw $t2, 0($s3)

sub $t0, $t0, $t2

sw $t0, 0($s4)

Question 3 – Solution

Chapter 2 — Instructions: Language of the Computer — 17

1. Assume that $s3 and $s4 contain the addresses of variables K,L.

Translate the code to C.

C languageMIPS Assembly

InstructionLabel

a = (b+c)+(b+d);

add $t0, $s0, $s1LOOP:

add $t1, $s0, $s2

add $t0, $t0, $t1

a = a-3;addi $t0, $t0, -3

a = a*8;sll $t0, $t0, 3

L[0] = a – K[0];

lw $t2, 0($s3)

sub $t0, $t0, $t2

sw $t0, 0($s4)

Question 3 – Solution

Chapter 2 — Instructions: Language of the Computer — 18

2. Consider the same code with the line: “j LOOP” at the end.

Translate the code with this modification.

C languageMIPS Assembly

InstructionLabel

While (true)
{

a = (b+c)+(b+d);

add $t0, $s0, $s1LOOP:

add $t1, $s0, $s2

add $t0, $t0, $t1

a = a-3;addi $t0, $t0, -3

a = a*8;sll $t0, $t0, 3

L[0] = a – K[0];

lw $t2, 0($s3)

sub $t0, $t0, $t2

sw $t0, 0($s4)

}j LOOP

Question 4 – Branch & Loops

Chapter 2 — Instructions: Language of the Computer — 19

Consider the following C code (Assume i is an integer):

do {

if (i==6) {

i = i-2;

}

i--;

}

While (i>=0);

Assume i’s address is located in $s0. Translate the code to

MIPS assembly.

Question 4 – Solution

Chapter 2 — Instructions: Language of the Computer — 20

MIPS Assembly

CommentsInstructionLabel

put the Constant 6 in $t2addi $t2, $0, 6

put i’s value in $t0lw $t0, 0($s0)

if i ≠ 6, skip next two
lines

bne $t0, $t2, ElseLOOP:

i = i-2addi $t0, $t0, -2

Store i’s new value in its
proper address

sw $t0, 0($s0)

Finished an iteration,
decrease i by 1

addi $t0, $t0, -1Else:

sw $t0, 0($s0)

if i<0, $t1=1, else $t1=0slti $t1, $t0, 0First
option

if $t1=0, jump to LOOPbeq $t1, $0, LOOP

if ($t0 ≥ 0) jump LOOPbgez $t0, LOOP
Second
option

loop broken, continue……Exit:

Question 5 – Logic Operations

Chapter 2 — Instructions: Language of the Computer — 21

1. Write an assembly code which inverts all the bits of $s0.

2. Translate the following Hexadecimal numbers to

Decimal: 0xbadc0ffe, 0xba1ddeaf

3. Consider the following assembly operation:

andi $s0, $s0, 255
Given that $s0 contains the value 0x287f2ad1, what

word would be stored in $s0 after the execution of this

instruction?

4. The instruction 0x00833020 is given in R-Format.

Translate it to the ordinary MIPS assembly syntax.

Question 5 – Solution

Chapter 2 — Instructions: Language of the Computer — 22

1. Write an assembly code which inverts all the bits of $s0.

nor $s0, $s0, $s0

2. Translate the following Hexadecimal numbers to Decimal:

0xbadc0ffe =

11 ∙ 167 + 10 ∙ 166 + 13 ∙ 105 + 12 ∙ 164 + 0 ∙ 163 + 15 ∙ 162 + 15 ∙ 16 + 14
= 3,134,984,190
0xba1ddeaf =

11 ∙ 167 + 10 ∙ 166 + 1 ∙ 105 + 13 ∙ 164 + 13 ∙ 163 + 14 ∙ 162 + 10 ∙ 16 + 15
= 3,122,519,727

3. Consider the following assembly operation: andi $s0, $s0, 255
Given that $s0 contains the value 0x287f2ad1, what word would be stored in

$s0 after the execution of this instruction?

First, translate 0x287f2ad1 from Hex to bits, and 255 from decimal to bits:

0010 1000 0111 1111 0010 1010 1101 0001

0000 0000 0000 0000 0000 0000 1111 1111

Bitwise And

0000 0000 0000 0000 0000 0000 1101 0001

Question 5 – Solution

Chapter 2 — Instructions: Language of the Computer — 23

4. The instruction 0x00833020 is given in R-Format. Translate it to the ordinary

MIPS assembly syntax.

To properly solve this question we need:

◼ A list of opcode – Instruction pairs

◼ A list of register number – register name pairs

0x00833020 =

add $a2, $a0, $v1

Opcode rs rt rd shamt funct

000000 00100 00011 00110 00000 100000

Signed & Unsigned

Chapter 2 — Instructions: Language of the Computer — 24

◼ In MIPS, negative numbers are represented in 2’s complement form.

◼ There are two sets of commands. One set for signed numbers and other are

for unsigned:

◼ Representing a result of an instruction performed on multiple numbers that

requires more bits that are available is called “Overflow”

◼ Overflow occurs when the leftmost retained bit of the binary bit pattern is not

the same as infinite number of digits to the left(the sign bit is incorrect: “0”

on the left – when number is negative or a “1” when the number is positive.

Signed Unsigned

add $reg1, $reg2, $reg3 addu $reg1, $reg2, $reg3

addi $reg1, $reg2, $reg3 addiu $reg1, $reg2, $reg3

sub $reg1, $reg2, $reg3 subu $reg1, $reg2, $reg3

mul $reg1, $reg2, $reg3 mulu $reg1, $reg2, $reg3

slti $reg1, $reg2, const sltiu $reg1, $reg2, const

Question 6 – Overflow

Chapter 2 — Instructions: Language of the Computer — 25

Assume we have registers of 4-bits only.

Add the following numbers and decide if there will be an

overflow or not.

1. 1001, 1010 (unsigned)

2. 0101, 0111 (unsigned)

3. 0101, 0111 (signed)

Question 6 – Overflow

Chapter 2 — Instructions: Language of the Computer — 26

1. 1001, 1010 (unsigned)

The answer is 1001110, but notice we now need 5 bits to

represent the result of the addition. Assuming we have only 4

bits - this is an overflow.

2. 0101, 0111 (unsigned)

The answer is 110010, which equal 12. No overflow this time.

3. 0101, 0111 (signed)

The answer is 110010. but this is a number in a 2’s complement

form, which is -4 (negate and add ‘1’).

This answer is not possible when adding two positive numbers.

This is also an Overflow. Because we consider the numbers to

be signed we have only 3 bits to represent the result (the fourth

is the sign bit). 5+7 is impossible to represent using 3 bits. The

largest positive number we can represent is 011110

Recitation 2 – Part B

Projects submission

remarks

Revision of C

Revision of C Language

◼ Last week we discussed:
◼ main()

◼ Functions

◼ Variables

◼ printf

◼ Arrays

◼ Today:
◼ Multi-dimensional arrays

◼ Strings

◼ Keyboard input

28

Revision of C Language

Multi-Dimensional Arrays

◼ Can be initialized during declaration:
◼ int my_matrix [3][2] = { {1,0}, {0,1}, {1,1} };

◼ Int zero_array[3][2] = { 0 };

◼ But usually use a nested loop:
◼ void init_array(int array[][100], int size, int value)

{
int i=0, j=0;
for (i=0; i<size; i++) {

for (j=0; j<100; j++) {
array[i][j] = value;

}
}

}

When passing an

array to a function,

you must specify all

dimensions,

beginning with the

second

29

Revision of C Language

Strings

◼ A string is simply an array of characters (char) ending with the ‘\0’

character (zero in the ASCII table, also known as NULL).

◼ All the special string functions rely on the ‘\0’ character at the end.

◼ A string can be initialized during its declaration:

◼ char str[16] = "hello world";

◼ The double quotation marks tell the compiler to add the ‘\0’ character.

◼ Note that ‘A’ and “A” are not the same. The single quotation mark is

used for a simple character (no ‘\0’ added).

◼ Good practice- always assign strings with value before using them.

h e l l o w o r l d \0 ? ? ? ?

str[0] End

of

string

str[15]

30

Revision of C Language

Strings
◼ The following function finds the length of a string. It relies on the existence of

the ‘\0’ character:

int my_strlen(char str[]) {
int i=0;
while (str[i]!=‘\0’) {

i++;
}
return i;

}

◼ What happens if we don’t have the NULL character?

◼ Possible options:

◼ Infinite loop

◼ Return different result each execution

◼ Crash (if we access forbidden memory address)

◼ Conclusion – don’t do that

31

Revision of C Language

Keyboard Input
◼ We use the “scanf” function in a similar way to “printf”, in order to receive

input from the user.

◼ Recall from last week, that except for arrays – variables passed to functions

do not change. How can we then change the variables with the input? Use

the ‘&’ symbol. We will discuss this when we talk about pointers.

◼ scanf(“%d %lf”, &student_num, &average);

◼ scanf ignores whitespaces. So the following are equivalent:

scanf(“%d%d”,&i,&j);
scanf(“%d %d”,&i,&j);

◼ If there is a non-whitespace character, then scanf expects to see it in the

input stream. If it doesn’t the function will fail:

scanf(“%d + %d”,&i,&j);

32

Revision of C Language

Keyboard Input
◼ If your input has more values than “scanf” expected, the rest will be kept for the

following “scanf” functions.

◼ By clicking “Enter” after inputting through the keyboard, the “enter” will also be

stored:
scanf(“%c”, &tav1);
scanf(“%c”, &tav2);
tav1 will hold ‘a’, and tav2 will hold ‘\n’.

◼ To avoid this, simply add ‘\n’ to your expected input format:
scanf(“%c”, &tav1);
scanf(“\n%c”, &tav2);
tav1 will hold ‘a’, and tav2 will hold ‘b’.

◼ You can also use the “getchar” function. The following are equivalent:
character = getchar();
scanf(“%c”, &character);

33

Revision of C Language

Keyboard Input
◼ Input of strings:

char answer[100];
scanf(“%s”, answer);
The input will continue up to the first whitespace or new line character. Note that

we don’t add the ‘&’ character for strings. This will be explained later.

◼ The user is responsible for allocating enough space in the string, including the

NULL character.

◼ You can also limit the number of character to read:
scanf(“%40s”, answer);

34

