
Digital Logic Systems
Recitation 7: Foundation of Combinational Circuits, Trees,

Masks

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 30, 2019

1/25

Foundations of Combinational Circuits: Building Blocks

The building blocks of combinational circuits:

Combinational gates

Wires and nets

I/O ports

2/25

Wires and nets

A wire is a connection between two terminals (e.g., an output of
one gate and an input of another gate). In the zero-noise model,
the signals at both ends of a wire are identical.

Very often we need to connect several terminals (i.e., inputs and
outputs of gates) together. We could, of course, use any set of
edges (i.e., wires) that connects these terminals together. Instead
of specifying how the terminals are physically connected together,
we use nets.

Definition

A net is a subset of terminals that are connected by wires. The
fan-out of a net N is the number of input terminals that are
contained in N.

3/25

Example

We may draw a net in any way that we find convenient or
aesthetic. The interpretation of the drawing is that terminals that
are connected by lines or curves constitute a net.

Figure: Three equivalent nets.

4/25

Simple nets

The following definition captures the type of nets we would like to
use. We call these nets simple.

Definition

A net N is simple if (i) N is fed by exactly one output terminal,
and (ii) N feeds at least one input terminal.

A simple net N that is fed by the output terminal t and feeds the
input terminals {ti}i∈I can be modeled by the wires {wi}i∈I . Each
wire wi connects t and ti . In fact, since information flows in one
direction, we may regard each wire wi as a directed edge t → ti .
To simplify the discussion, we model simple nets by a “star” of
wires emanating from a common output terminal.

Each such wire connects an output terminal of a gate to input
terminal of a gate. Thus, a full description of a wire is of the form
(g1, t1)Ð→ (g2, t2), where t1 is an output terminal of gate g1 and
t2 is an input terminal of gate t2.

5/25

Input/Output gates

Definition (input and output gates)

An input gate is a gate with zero inputs and a single output.
An output gate is a gate with one input and zero outputs.

Output GateInput Gate

Inputs from the “external world” are fed to a circuit via input
gates.

Outputs to the “external world” are fed by the circuit via
output gates.

an input gate is labeled (in, xi), where xi is the name of the
signal along the wire that emanates from it.

an output gate is labeled (out, yi), where yi is the name of
the signal along the wire that enters it.

6/25

Combinational Gates

inputs and outputs of a gate are often referred to as
terminals, ports, or even pins.

fan-in of a gate g = number of input terminals of g (i.e., the
number of bits in the domain of the Boolean function that
specifies the functionality of g).

The basic gates that we consider are: inverter (not-gate),
or-gate, nor-gate, and-gate, nand-gate, xor-gate,
nxor-gate, multiplexer (mux). All these gates have a single
output.

basic gates have constant fan-in (1 for inverter, 3 for MUX
only, 2 for all the others). We usually assume that these basic
gates have the same constant tpd . This assumption is not
precise.

fan-out ≠ the number of output ports.

7/25

Combinational Circuit - definition

For simplicity, we assume that Γ contains combinational gates with
a single output terminal, two input terminals, and implement
commutative Boolean functions.
Let IO denote a library that contains two special types of gates:
input-gates (in, xi) and output-gates (out, yj).

Definition

A combinational circuit C is a pair (G , π), where G = (V ,E) is a
directed acyclic graph and π ∶ V → Γ ∪ IO is a labeling function
such that:

1 π(v) ∈ IO iff v is a source or a sink in G .

2 For every vertex v , the in-degree of v equals the fan-in of
π(v).

3 The restriction of π to sources and sinks is one-to-one.
(Namely, the names of input-gates and output-gates are
distinct.)

8/25

Metrics

We judge the combinational circuits by:

Cost - sum of all the gates’ costs

Propagation Delay - sum of tpd of all components along the
critical path

9/25

Cost

Let C = (G , π) denote a combinational circuit where
G = (V ,E) is a directed graph and π ∶ V → Γ ∪ IO is a
labeling.

Let c ∶ Γ ∪ IO → R≥0 denote a cost function. Usually,
input-gates and output-gates have zero cost.

Definition

The cost of C is defined by

c(C) △= ∑
v∈V

c(π(v)).

10/25

Propagation delay

The propagation delays tpd(v) are computed by Algorithm
SIM(C , x⃗).

Definition

The propagation delay of C is defined by

tpd(C) △= max
v∈V

tpd(v).

We often refer to the propagation delay of a combinational circuit
as its depth or simply its delay.

Definition

The propagation delay of a path p in G is defined as

tpd(p) △=∑
v∈p

tpd(π(v)).

11/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

12/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

The inputs equal 1 during the interval [100,109] . When is the
gate consistent?

1

100 109t

x1(t)

x2(t)

y(t)

1

?

12/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

The inputs equal 1 during the interval [100,109] . When is the
gate consistent? y(t) = 1 in the interval [102,109]

1

100 102 109t

x1(t)

x2(t)

y(t)

1

 tpd=2 1

12/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

x1(t) = 1 during the interval (109,115], x2(t) = non-logical during
the interval (109,110), and x2(t) = 0 during the interval
[110,115]. What can we say about y(t)?

1

100 102 109 110 t

x1(t)

x2(t)

y(t)

1

 1

115

?

0

12/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

x1(t) = 1 during the interval (109,115], x2(t) = non-logical during
the interval (109,110), and x2(t) = 0 during the interval
[110,115]. What can we say about y(t)? = 0 in t ∈ [112,115]
t

x1(t)

x2(t)

y(t) 1 ?tcont=0 tpd=2 0

1

100 102 109 110 111 112

1

115

 0

12/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

x2(t) remains stable during the interval [110,120], x1(t) becomes
non-logical during the interval (115,116), and x1(t) equals 1 again
during the interval [116,120]. y(t) =
t

x1(t)

x2(t)

y(t) 1 ? 0

1

100 102 109 110 111 112

1

115

 0

116

1

120

?

12/25

Propagation delay example (skipped in lecture slides 10-11)

Example

Consider an and-gate with inputs x1(t) and x2(t) and an output
y(t). Given: tpd = 2, tcont = 0. seconds. (All time units are in
seconds in this example, so units will not be mentioned anymore in
this example).

x2(t) remains stable during the interval [110,120], x1(t) becomes
non-logical during the interval (115,116), and x1(t) equals 1 again
during the interval [116,120]. y(t) = 0 in t ∈ [118,120]
t

x1(t)

x2(t)

y(t) 1 ? 0

1

100 102 109 110 111 112

1

115

 0

116 117 118

1

120

?tcont=0 tpd=2 0

12/25

Critical paths

Algorithm SIM(C , x⃗) computes the largest delay of a path in G .

Claim (9)

tpd(C) = max{tpd(p) ∣ p is a path in G}

Definition

Let C = (G , π) denote a combinational circuit. A path p in G is
critical if tpd(p) = tpd(C).

We focus on critical paths that are maximal (i.e., cannot be further
augmented). This means that maximal critical paths begin in an
input-gate and end in an output-gate.

13/25

SIM - Algorithm for a simulation of a combinational circuit

14/25

Example - SIM algorithm

Consider the following circuit

15/25

Example - SIM algorithm

First step - run topological sorting

15/25

Example - SIM algorithm

Begin iterating according to topological order

15/25

Example - SIM algorithm

Input x1 is evaluated as a zeros-delay identity function

15/25

Example - SIM algorithm

Input x2 is evaluated as a zeros-delay identity function

15/25

Example - SIM algorithm

Input x3 is evaluated as a zeros-delay identity function

15/25

Example - SIM algorithm

Inverter is evaluated

15/25

Example - SIM algorithm

AND2 gate is evaluated

15/25

Example - SIM algorithm

OR2 gate is evaluated

15/25

Example - SIM algorithm

Output gate y is evaluated as a zero delay identity function

15/25

Question 1: How hard is the critical path computation?

Recall Claim 9

Claim (9)

tpd(C) = max{tpd(p) ∣ p is a path in G}

The number of paths can be exponential in n. Does this mean that
we cannot compute the propagation delay of a combinational
circuit in linear time?

Answer: Homework

16/25

Question 2 - A common counting problem

Example

One wants to have all the possible couples of xi , xj to go through a
XOR gate and reach a yk . What would be the cost of such a
circuit? What is the propagation delay?

17/25

Question 2 - A common counting problem

Example

One wants to have all the possible couples of xi , xj to go through a
XOR gate and reach a yk . What would be the cost of such a
circuit? What is the propagation delay?

17/25

Question 2 - A common counting problem

Example

One wants to have all the possible couples of xi , xj to go through a
XOR gate and reach a yk . What would be the cost of such a
circuit? What is the propagation delay?

17/25

Question 2 - A common counting problem

Example

One wants to have all the possible couples of xi , xj to go through a
XOR gate and reach a yk . What would be the cost of such a
circuit? What is the propagation delay?

All the gates are summed up to:

c(n) = ∑n−1
i=0 i =®

arithmetic series

0 ⋅ n + 1 ⋅ (n−1)⋅n2 = Θ(n2)
17/25

Associative Boolean functions

Definition

A Boolean function f ∶ {0,1}2 → {0,1} is associative if

f (f (σ1, σ2), σ3) = f (σ1, f (σ2, σ3)),

for every σ1, σ2, σ3 ∈ {0,1}.

If f (x1, x2) is an associative Boolean function, then one could
define fn in many equivalent ways, as summarized in the following
claim.

Claim

If f ∶ {0,1}2 → {0,1} is an associative Boolean function, then

fn(x1, x2, . . . xn) = f (fn−k(x1, . . . , xn−k), fk(xn−k+1, . . . , xn)),

for every n ≥ 2 and k ∈ [1,n − 1].

18/25

Associative Boolean functions

Among the 16 existing binary (n = 2 variables) Boolean operators -
8 which are associative:

1 f (x , y) = and(x , y)
2 f (x , y) = or(x , y)
3 f (x , y) = xor(x , y)
4 f (x , y) = nxor(x , y)
5 f (x , y) = x
6 f (x , y) = y
7 f (x , y) = 1
8 f (x , y) = 0

Important Remark

For higher number of inputs n > 2, these functions can be
implemented using by a tree-structured combinational circuit.

Example

or-Tree(n), and-Tree(n), xor-Tree(n). Where n is # inputs

19/25

Associative Boolean functions

Among the 16 existing binary (n = 2 variables) Boolean operators -
8 which are associative:

1 f (x , y) = and(x , y)
2 f (x , y) = or(x , y)
3 f (x , y) = xor(x , y)
4 f (x , y) = nxor(x , y)
5 f (x , y) = x
6 f (x , y) = y
7 f (x , y) = 1
8 f (x , y) = 0

Important Remark

For higher number of inputs n > 2, these functions can be
implemented using by a tree-structured combinational circuit.

Example

or-Tree(n), and-Tree(n), xor-Tree(n). Where n is # inputs

19/25

Associative Boolean functions

Among the 16 existing binary (n = 2 variables) Boolean operators -
8 which are associative:

1 f (x , y) = and(x , y)
2 f (x , y) = or(x , y)
3 f (x , y) = xor(x , y)
4 f (x , y) = nxor(x , y)
5 f (x , y) = x
6 f (x , y) = y
7 f (x , y) = 1
8 f (x , y) = 0

Important Remark

For higher number of inputs n > 2, these functions can be
implemented using by a tree-structured combinational circuit.

Example

or-Tree(n), and-Tree(n), xor-Tree(n). Where n is # inputs

19/25

Trees can have large delay

A tree with n inputs can have a linear delay Θ(n) if not
balanced properly.

We want to construct trees with logarithmic delay Θ(log(n)).

Solution: Balanced-Tree(n) algorithm:
1 Case of n = 1 is trivial, just return the variable itself.
2 If n ≥ 2 then

1 let a,b be a balanced partition of n
2 T ∗a = Balanced-Tree(a)
3 T ∗b = Balanced-Tree(b)
4 Connect the roots of T ∗a ,T

∗

b to a new (fan-in=2) root.

20/25

Trees can have large delay

A tree with n inputs can have a linear delay Θ(n) if not
balanced properly.

We want to construct trees with logarithmic delay Θ(log(n)).

Solution: Balanced-Tree(n) algorithm:
1 Case of n = 1 is trivial, just return the variable itself.
2 If n ≥ 2 then

1 let a,b be a balanced partition of n
2 T ∗a = Balanced-Tree(a)
3 T ∗b = Balanced-Tree(b)
4 Connect the roots of T ∗a ,T

∗

b to a new (fan-in=2) root.

20/25

Trees can have large delay

A tree with n inputs can have a linear delay Θ(n) if not
balanced properly.

We want to construct trees with logarithmic delay Θ(log(n)).

Solution: Balanced-Tree(n) algorithm:
1 Case of n = 1 is trivial, just return the variable itself.
2 If n ≥ 2 then

1 let a,b be a balanced partition of n
2 T ∗a = Balanced-Tree(a)
3 T ∗b = Balanced-Tree(b)
4 Connect the roots of T ∗a ,T

∗

b to a new (fan-in=2) root.

20/25

Balanced partitions

Definition

Two positive integers a,b are a balanced partition of n if:

1 a + b = n, and

2 max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 n⌉ − 1.

Claim (This is how you pick balanced (a,b) pairs)

If n = 2k − r , where 0 ≤ r < 2k−1, then the set of balanced partitions
is

P
△= {(a,b) ∣ 2k−1 − r ≤ a ≤ 2k−1 and b = n − a}.

Corollary (12.10)

The propagation delay of a balanced or-tree(n) is
⌈log2 n⌉ ⋅ tpd(or).

21/25

Bitwise operations

Logic instructions are commonly used to set (turn on) or clear
(reset, turn off) individual bits within a word without affecting
other bits.

and-mask

By anding a value with a deliberately designed constant, called a
“bit mask” we can clear/preserve specific bits.
Zeros in the mask clear the corresponding value.
Ones in the mask preserve the corresponding value.

value 10010100
mask 00001111
——————–
result 00000100

22/25

Masks and bitwise operations

or-mask

or operation is used to preserve/set bits.
Zeros in the mask preserve the corresponding value.
Ones in the mask set the corresponding value to 1.

value 10010100
mask 00001111
——————–
result 10011111

xor-mask

An xor can be used to preserve/negate specific bits.
Zeros in the mask preserve the corresponding value.
Ones in the mask flip the corresponding value.

value 10010100
mask 00001111
——————–
result 10011011 23/25

Masks - Example

Example

PB(n) is a combinational circuit defined as follows:

Input: x ,m ∈ {0,1}n

Output: y ∈ {0,1}.

Functionality:
y ≜ OR({xi ∣mi = 1})

Note: OR(∅) ≜ 0

24/25

Masks - Example

Example

PB(n) is a combinational circuit defined as follows:

Input: x ,m ∈ {0,1}n

Output: y ∈ {0,1}.

Functionality:
y ≜ OR({xi ∣mi = 1})

Note: OR(∅) ≜ 0

AND(n)

x[n-1:0]

m[n-1:0]

y OR-Tree
 (n)n

n

n

24/25

Circuit parameters vs inputs

Example

Consider the following circuit Toy(n)

Input: x ∈ {0,1}n

Output: y ∈ {0,1}.

Functionality: Let p = ⟨x[n − 1 ∶ 0]⟩. The output y respects the
following:

y = 1⇔ p = 2n−1

n is the Toy(n)’s parameter

It is a hardwired constant of a particular circuit. It cannot be
changed during the circuit’s operation, but can be used as a design
parameter.

p is the Toy(n)’s input value

It changes during the operation of the circuit, as a function of the
input x. Cannot be used as a design parameter.

25/25

