
Digital Logic Systems
Recitation 2: Sequences and Series & Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 12, 2019

1/12



Function that maps functions

Consider the following set of functions

F ≜ {fn ∣ fn ∶ {0,1}n → {0,1} where n ∈ {2, ..,16} ;

fn(a) = 1↔ a = 1n}

Consider the function π defined as follows:

π ∶ F → {2, ..,16} ; π(fn) = n

Question

Is π a bijection? Yes:

1 One-to-one, since for a given n, there exists a unique ANDn

function.

2 Onto, since for every n, there is a valid ANDn function.

2/12



Sequences and Series

Sequences

1 A sequence is a function from N to R.

2 Abuse-of-Notation: We usually denote a sequence by fn where
the nth element of the sequence is also denoted fn.

3 Three popular families of sequences: Arithmetic an = a0 + n ⋅ d ,
Geometric bn = b0 ⋅ qn, Harmonic 1

n

4 You can recognize a sequence as a member of a specific
family if you can parameterize it accordingly:

Example

hn ≜ −7 ⋅ n is arithmetic with a0 = 0,d = −7

fn ≜ 5 ⋅ 10n is geometric with b0 = 5,q = 10

3/12



Sequences and Series

Series

1 Series is a sum over a certain number of sequence’s elements

2 Notation: sum over elements 0 through n is denoted Sn.

3 We are interested in finding closed-form expressions for series.
A closed mathematical expression doesn’t contain ∑ or Π
operators, and can be evaluated by a small number of well
known operations (+,-,⋅,/).

4 SArithmetic
n = ∑n

i=0 ai = a0 ⋅ (n + 1) + d ⋅ n⋅(n+1)2

5 SGeometric
n = ∑n

i=0 bi = b0 ⋅ q
n+1−1
q−1

4/12



Finding a Closed Form Expression

Example

Write a closed form expression for ∑3n−1
i=0 xi . Where the sequence

xi =
⎧⎪⎪⎨⎪⎪⎩

0 if mod(i ,3) = 1

2i otherwise

Solution

3n−1
∑
i=0

xi = 20 + 0 + 22 + 23 + 0 + 25 + 26 + 0 + 28 + ... + 0 + 23n−1

= (20 + 23 + 26 + ... + 23n−3) + (22 + 25 + 28 + ... + 23n−1)
= (20 + 23 + 26 + ... + 23n−3) + 4 ⋅ (20 + 23 + 26 + ... + 23n−3)

= 5 ⋅
n−1
∑
i=0

23i = 5 ⋅
n−1
∑
i=0

8i = 5 ⋅ 8
n − 1

8 − 1
= 5

7
⋅ (8n − 1)

5/12



Directed Graphs - Definitions

1 A graph is defined by a set of vertices V and edges E .
G = (V ,E).

2 An edge e ∈ E can be directed, in this case e = (u, v) means
that the edge is directed from vertex u ∈ V to v ∈ V .

3 A vertex v ∈ V can be characterized by its degin(v) which
stands for the number of incoming edges, and by degout(v)
which stands for the number of outgoing edges.

Graphs

Directed Graphs

Directed Acyclic Graphs

6/12



DAGs

1 DAG stands for Directed Acyclic Graph.

2 Every DAG has at least 1 source and at least 1 sink.

3 Vertices of any DAG can be sorted in a Topological Ordering

4 Topological ordering is described by the labeling function π

Definition

A bijection π ∶ V → {0, ...,n − 1} is a topological ordering if

(u, v) ∈ E ⇒ π(u) < π(v)
In other words:

π(v) < π(u)⇒ (u, v) ∉ E

5 For a given DAG, there can be multiple topological orderings.

7/12



Algorithm for topological ordering

Algorithm TS(V ,E) outputs an ordering: π(u) = 0, π(v) = 1, . . .
Notation:

Ev
△= {e ∣ e enters v or emanates from v}.

Algorithm 1 TS(V ,E) - An algorithm for sorting the vertices of a
DAG G = (V ,E) in topological ordering.

1 Base Case: If ∣V ∣ = 1, then let v ∈ V and return (π(v) = 0).
2 Reduction Rule:

1 Let v ∈ V denote a sink.
2 return (TS(V ∖ {v},E ∖ Ev) extended by (π(v) = ∣V ∣ − 1))

8/12



example of DAG

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3
e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

9/12



Algorithm: longest path lengths

Algorithm 2 longest-path-lengths(V ,E) - An algorithm for comput-
ing the lengths of longest paths in a DAG. Returns a delay function
d(v).

1 topological sort: (v0, . . . , vn−1)← TS(V ,E).
2 For j = 0 to (n − 1) do

1 If vj is a source then d(vj)← 0.
2 Else

d(vj) = 1 +max{d(vi) ∣ i < j and (vi , vj) ∈ E}.

10/12



Algorithm: longest path (not just length)

Question

Given a DAG G = (V ,E), design an algorithm that prints the
vertices along the longest path.

Hint

You can maintain an auxiliary data structure during the run of the
algorithm.

11/12



Algorithm: longest path (not just length)

Algorithm 3 longest-path(V ,E) - An algorithm for computing the
longest path in a DAG. Outputs a delay function d(v) and prints
out the sequence of vertices that form the longest path.

1 topological sort: (v0, . . . , vn−1)← TS(V ,E).
2 For j = 0 to (n − 1) do

1 If vj is a source then d(vj)← 0.
2 Else

prev(vj) = arg max
vi

{d(vi) ∣ i < j and (vi , vj) ∈ E}.

d(vj) = 1 + d(prev(vj))

3 vj ∶= arg maxvi {d(vi) ∣ vi ∈ V }
4 While (True):

1 Print vj
2 If d(vj) = 0: break;
3 Else: vj ← prev(vj)

12/12


