Digital Logic Systems

Recitation 2: Sequences and Series & Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 12, 2019

1/12

Function that maps functions

Consider the following set of functions

F={fy]f,:{0,1}" - {0,1} where n¢ {2,..,16} ;
fn(a) =l a=].n}

Consider the function 7 defined as follows:

m:F—>{2,.,16} ; n(fy)=n

Is T a bijection? Yes:

© One-to-one, since for a given n, there exists a unique AND,,
function.

@ Onto, since for every n, there is a valid AND,, function.

2/12

Sequences and Series

Sequences
@ A sequence is a function from N to R.

@ Abuse-of-Notation: We usually denote a sequence by f, where
the n'" element of the sequence is also denoted f,.

© Three popular families of sequences: Arithmetic a, =ag+n-d,

Geometric b, = by - ", Harmonic %

@ You can recognize a sequence as a member of a specific
family if you can parameterize it accordingly:

h, 2 =7 - n is arithmetic with ag =0,d = -7
f, 25-10" is geometric with bg =5,q = 10

3/12

Sequences and Series

Series
@ Series is a sum over a certain number of sequence'’s elements
@ Notation: sum over elements O through n is denoted S,,.
© We are interested in finding closed-form expressions for series.
A closed mathematical expression doesn't contain Y. or [1
operators, and can be evaluated by a small number of well
known operations (+,-,-,/).
Arithmetic _ sn _ n-(n+1)
Q sprmete = ylgai=ao- (n+1)+d-—5
Geometric _ <xn L q"tl-1
(5] Sn ' —Z;:Obl—bO’ g-1

4/12

Finding a Closed Form Expression

Write a closed form expression for Y37

N {o if mod(i,3) =1

2 otherwise

X;. Where the sequence

3n-1

S oxi=2+0+22+23+0+2°+2°+0+2% +

i=0
=(20+234+2%+
(
=(20+2342%+
(

=5. 223' 5. 28'—

8”

R, U T L L, L

+233) 44, (20 +25 4204+

5
=2.(8"-1
— 7()

L+ 0+23m1

L+ 23

+ 23”—3)

5/12

Directed Graphs - Definitions

@ A graph is defined by a set of vertices V and edges E.
G=(V,E).

@ An edge e € E can be directed, in this case e = (u, v) means
that the edge is directed from vertex ue V tove V.

© A vertex v € V can be characterized by its degj,(v) which
stands for the number of incoming edges, and by dego,:(Vv)
which stands for the number of outgoing edges.

Graphs

Directed Graphs

Directed Acyclic Graphs

6/12

© DAG stands for Directed Acyclic Graph.

@ Every DAG has at least 1 source and at least 1 sink.

© Vertices of any DAG can be sorted in a Topological Ordering
@ Topological ordering is described by the labeling function ©

Definition

A bijection w: V - {0,...,n—1} is a topological ordering if
(u,v) e E=m(u) <m(v)

In other words:
w(v) <m(u) = (u,v) ¢ E

© For a given DAG, there can be multiple topological orderings.

7/12

Algorithm for topological ordering

Algorithm TS(V/, E) outputs an ordering: 7(u) =0,7(v) =1,...
Notation:

A
E, = {e| e enters v or emanates from v}.

Algorithm 1 TS(V, E) - An algorithm for sorting the vertices of a
DAG G = (V, E) in topological ordering.
@ Base Case: If |V|=1, then let v € V and return (7(v) = 0).
@ Reduction Rule:

O Let v e V denote a sink.
@ return (TS(V ~{v},E\E,) extended by (w(v) =|V|-1))

8/12

example of DAG

V10

9/12

Algorithm: longest path lengths

Algorithm 2 longest-path-lengths(V, E) - An algorithm for comput-
ing the lengths of longest paths in a DAG. Returns a delay function
d(v).
@ topological sort: (vg,...,vp-1) <« TS(V,E).
@ Forj=0to (n-1) do
@ If v; is a source then d(v;) < 0.
@ Else

d(v;)=1+max{d(v;)|i<jand (v;,v;) € E}.
j j

10/12

Algorithm: longest path (not just length)

Given a DAG G = (V, E), design an algorithm that prints the
vertices along the longest path.

Hint
You can maintain an auxiliary data structure during the run of the

| A

algorithm.

11/12

Algorithm: longest path (not just length)

Algorithm 3 longest-path(V/, E) - An algorithm for computing the
longest path in a DAG. Outputs a delay function d(v) and prints
out the sequence of vertices that form the longest path.
@ topological sort: (vg,...,vp-1) « TS(V,E).
@ Forj=0to(n-1)do
@ If v; is a source then d(v;) < 0.
@ Else

prev(v;) = argmax{d(v,-) |i<jand (vj,v)e E}.

d(vj) =1+ d(prev(v;))

Q v; = argmax,, {d(v;) | vje V}

© While (True):
@ Print v;
@ If d(vj) =0: break;
© Else: vj < prev(vj)
12/12

