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Digital Logic and its place in electronics

Figure: A hierarchy of design levels in modern electronics
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Sets

Let A
△= {1,2,4,8} and B

△= {pencil,pen, eraser}.

Examples of equal sets:
(i) Order and repetitions do not affect the set, e.g., {1,1,1} = {1}

and {1,2} = {2,1}.
(ii) {2,4,8,1,1,2} = A,
(iii) {1,2,44,8} ≠ A,
(iv) A ≠ B.

The empty set is denoted by ∅. The set {∅} contains a single
element which is the empty set. Therefore, ∅ ≠ {∅}.
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Sets can be disjoint

If A ∩B = ∅, then we say that A and B are disjoint.

if A1 ∩⋯ ∩Ak = ∅ then we say A1, . . . ,Ak are disjoint .

if for every i ≠ j , the sets Ai and Aj are disjoint, we say that
the sets A1, . . . ,Ak are pairwise-disjoint

Example

Consider the three sets {1,2}, {2,3} and {1,3}. Their intersection
is empty, therefore, they are disjoint. However, the intersection of
every pair of sets is nonempty, therefore, they are not pairwise
disjoint.

When A ∩B = ∅, we denote their union by A ⊍B:
1 ∣A ⊍B ∣ = ∣A∣ + ∣B ∣,

When it is unknown whether A and B are disjoint, we denote
their union by A ∪B:

1 ∣A ∪B ∣ ≤ ∣A∣ + ∣B ∣
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Sets equality

Lemma

For every sets A and B,

A ∖B = A ∩ B̄ .

Proof.

To prove this we show containment in both directions:

(i) We prove that A ∖B ⊆ A ∩ B̄. Let x ∈ A ∖B. By the definition
of subtraction of sets, this means that x ∈ A and x /∈ B. By
the definition of complement, x ∈ B̄. By the definition of
intersection, x ∈ A ∩ B̄, as required.

(ii) We prove that A ∩ B̄ ⊆ A ∖B. Let x ∈ A ∩ B̄. By the definition
of intersection of sets, this means that x ∈ A and x ∈ B̄. By
the definition of complement, x ∈ B̄ implies that x /∈ B. By the
definition of subtraction, x ∈ A ∖B, as required.
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Boolean Functions

The parity function p ∶ {0,1}n → {0,1} is defined as follows.

p(b1, . . . ,bn) △=
⎧⎪⎪⎨⎪⎪⎩

1 if ∑n
i=1 bi is odd

0 if ∑n
i=1 bi is even.

For example: (i) p(0,1,0,1,0) = 0, (ii) p(0,1,1,1,0) = 1,
(iii) for n = 2, the parity function is identical to the xor
function.

The majority function m ∶ {0,1}n → {0,1} is defined as
follows.

m(b1, . . . ,bn) = 1 if and only if
n

∑
i=1

bi >
n

2
.

For example: (i) m(0,1,0,1,0) = 0, (ii) m(0,1,1,1,0) = 1,
(iii) for n = 2, the majority function is identical to the and
function.
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Boolean Functions: Truth Tables

Remember

If you have the truth-tables of the functions f ,g ∶ {0,1}n → {0,1}
and these truth tables are exactly identical, then g = f
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Boolean Functions: some more Boolean functions

Definition

The implication operator → (x , y) is defined by

x → y ⇔ x̄ ∨ y .

The equivalence operator ↔ (x , y) is defined by

x ↔ y ⇔ ¬(x ⊕ y) .

Truth tables:

x y → (x , y)
0 0 1
1 0 0
0 1 1
1 1 1

x y ↔ (x , y)
0 0 1
1 0 0
0 1 0
1 1 1
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Commutative and Associative Binary Operations

The subtraction operation − ∶ R2 → R is neither associative nor
commutative.
For example:

0 − (0 − 1) = 1 but (0 − 0) − 1 = −1, and

1 − 2 = −1 but 2 − 1 = 1.
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Proving or Refuting Claims

Remember

proving a claim: prove it for every example possible

refuting a claim: provide a single counter example
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Two variants of proof by induction

Theorem (Induction)

Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for every n ∈ N, n ∈ P
implies that (n + 1) ∈ P. Then, P = N.

We remark, that sometimes the induction hypothesis is that i ∈ P,
for every i ≤ n. This form of induction is often called complete
induction, as formulated in the following theorem.

Theorem (Complete Induction)

Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for every n ∈ N,
{0, . . . ,n} ⊆ P implies that (n + 1) ∈ P. Then, P = N.
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Proof by Induction

How to approach induction:

1 Understand the claim you are proving.

2 Determine the n on which the induction is to be performed.

3 Declare “induction/complete induction on n”

4 Induction basis: prove that 0 ∈ P.

5 Induction hypothesis: assume that n ∈ P.

6 Induction step: prove that if the induction hypothesis holds,
then n + 1 ∈ P. (if you haven’t used the hypothesis here, you
probably have a mistake)
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Induction on sets Example 1

Lemma (1)

For finite sets A and B (regardless of their disjointness)
∣A ×B ∣ = ∣A∣ ⋅ ∣B ∣

Proof by induction on ∣A∣ = n ∈ N.

Basis: n = 0→ ∣A∣ = 0→ A = ∅. Hence
∣A ×B ∣ = ∣∅ ×B ∣ = ∣∅∣ = 0 and also ∣A∣ ⋅ ∣B ∣ = ∣∅∣ ⋅ ∣B ∣ =0

Hypothesis:For ∣A∣ = n: ∣A ×B ∣ = n ⋅ ∣B ∣
Step: Must prove for ∣A∣ = n + 1: ∣A ×B ∣ = (n + 1) ⋅ ∣B ∣.
Define A′ = A/{a0} where a0 ∈ A.

Clearly ∣A′∣ = n and ∣{a0}∣ = 1

A ×B = A′ ×B ⊎{(a0,b)∣b ∈ B}

∣A×B ∣ = ∣A′×B ∣+ ∣{(a0,b)∣b ∈ B}∣ =®
hypo.

n ⋅ ∣B ∣+1 ⋅ ∣B ∣ = (n+1) ⋅ ∣B ∣
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Induction on sets Example 2

Lemma (2)

For finite set A
∣An∣ = ∣A∣n

Proof by induction on n ∈ N+.

Basis: Is trivial: n = 1→ A1 = A and ∣A∣1 = ∣A∣
Hypothesis: For n > 1: ∣An∣ = ∣A∣n

Step: Must prove for n + 1: ∣An+1∣ = ∣A∣n+1.

∣An+1∣ =®
cartesian

∣An×A∣ =®
lemma 1

∣An∣ ⋅ ∣A∣ =®
hypo.

∣A∣n ⋅ ∣A∣ =®
power rule

∣A∣n+1
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More on Induction

Pólya’s proof that “all horses have the same color”.
We obviously know that there are two horses with different colors,
as depicted in the following figure.

HorseHorse

Figure: A counter example to the claim that all the (spherical) horses are
the same color. To prove that a claim is not correct all we need is to
supply a counter example.
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The “proof” is by induction on the number of horses, denoted
by n.

Thus, we wish to prove that in every set of n horses, all the
horses have the same color.

The induction basis, for n = 1, is trivial since in a set
consisting of a single horse there is only one color.

The induction hypothesis simply states that in every set of n
horses, all horses have the same color.
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Induction (cont.)

The induction step. We need to prove that if the claim holds
for n, then it also holds for n + 1.

1 Number the horses, i.e., {1, . . . ,n + 1}.
2 Consider two subsets of horses A

△= {1, . . . ,n} and

B
△= {2, . . . ,n + 1}.

3 By the induction hypothesis the horses in set A have the same
color and the horses in set B also have the same color.

4 Since 2 ∈ A ∩B ⇒ the horses in A ∪B have the same color.

We have “proved” the induction step, and the “theorem”
follows.
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Induction (cont.)

What is wrong with this proof?

Note that, in the induction step, A ∩B ≠ ∅ only if n ≥ 3.

However, the induction basis was proved only for n = 1 ⇒
we did not prove the induction step for a set of 2 horses.

A correct proof would have to extend the basis to n = 2, an
impossible task.

The take home advice is to make sure that the induction basis
is proved for all the cases. In particular, never skip the
induction basis even if you think that the claim is “easy” for
small values of n.

Guy Even, Moti Medina Digital Logic Systems



19/21

Lemma

∣P(A)∣ = 2∣A∣, for every finite set A.

Proof.

1 We define a function f ∶ P(A)→ {0,1}∣A∣ as follows. Assume
that without loss of generality A = {a0, a1, ..., a∣A∣−1} and
f (s) = vs . The vector vs is formed according to the following
rule: vs[i] = 1 if ai ∈ s and vs[i] = 0 if ai ∉ s.

2 We show that f is one-to-one and onto.(requires proof)

3 From combinational considerations: ∣{0,1}∣A∣∣ = 2∣A∣

4 From (2) and (3) it follows that ∣P(A)∣ = ∣{0,1}∣A∣∣ = 2∣A∣
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Recursion: the factorial function

Definition

The tower of Hanoi function t ∶ N→ N is defined recursively by:

(i) Base case: t(0) = 0.

(ii) Reduction rule: t(n + 1) = 2t(n) + 1.

Claim

t(n) = 2n − 1.

Proof.

By induction on n.
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Contraposition

Problem

Prove that x2 + 6x + 5 is even Õ x is odd.

Proof.

By contraposition:

Assume that x is even.

Therefore x2 is even, 6x is even, 5 is odd.

Summing up all of the above leads to an odd sum.
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