Digital Logic Systems

Recitation 8: Lower Bounds on cost and delay, Multiplexers,
Decoders, Encoders

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 6, 2019

1/22

When does a function depend on an input?

A Boolean function f: {0,1}" - {0,1} depends on its i*" input if

frx,-=0 # frx,:l-

| A

Example

Consider the Boolean function f(X) = XOR2(x1,x2). The function
f depends on the ith input for i = 2. Indeed, fix,=1(x1) = NOT(x1)
and erzzo(Xl) = X1.

A\

2/22

The cone of a function

Definition (Cone of a Boolean function)

The cone of a Boolean function f:{0,1}" — {0,1} is defined by

cone(f) = {i: fix=0 # fix;=1}-

Alternative Definition (Cone of a Boolean function)

Let £:{0,1}" - {0,1}* denote a Boolean function. Then,

i€cone(f) <= 3ve{0,1}":f(v) = f(flip;(V)).

Cone if a function f is a set of all the indices that f depends on.

The cone of the Boolean function f(X) = XOR2(x1,x2) equals
{1,2} because XOR depends on both inputs.

3/22

Example

Example

Consider the following Boolean function:

f(;():{o if Yox <3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3
ones are revealed, one can determine the value of f(X).
Nevertheless, the function f(Xx) depends on all its inputs, and
hence, cone(f) ={1,...,n}.

4/22

Lower Bound Theorems

Theorem

Let C denote a combinational circuit that implements a Boolean
function f : {0,1}" — {0,1}. If the fan-in of every gate in C is at
most 2, then

c(C) > |cone(f)| - 1.

Theorem

Let C = (G, m) denote a combinational circuit that implements a
non-constant Boolean function f : {0,1}" — {0,1}. If the fan-in of
every gate in C is at most k, then

tpd (C) > log, |cone(f)|.

The lower bounds are on the function (based on the cone of your
function). Whereas the actual order of growth of the design are on
your design

5/22

Definition of Decoder

A decoder with input length n:
Input: x[n-1:0]€{0,1}".
Output: y[2"-1:0]€{0,1}*

Functionality:
. 1 if(x)=1i
y[']é{ X

0 otherwise.

Number of outputs of a decoder is exponential in the number of
inputs. Note also that exactly one bit of the output y is set to one.
Such a representation of a number is often termed one-hot
encoding or 1-out-of-k encoding.

Consider a decoder DECODER(3). On input x = 101, the output y
equals 00100000.

6/22

An asymptotically optimal decoder design

Base case DECODER(1):

The circuit DECODER(1) is simply one inverter where:

y[0] < INV(x[0]) and y[1] < x[0].

Reduction rule DECODER(n):

We assume that we know how to design decoders with input
length less than n, and design a decoder with input length n.

7/22

aglk—1:0] =2k —1:0]

k

Decoder(k)

RE2F—1:0]12"

n—k 5 ok Qlg
‘TL["'*IX*LU] n—k i s .
) Decoder(n — k) array of

eln—1:4 ke X AND-gates
Q- 10

Figure: A recursive implementation of DECODER(n).

Claim (Correctness)

Performance Analysis of Decoder

c(n) =Q(2") (regardless of the value of k).
c(n)=0(2") if k=[n/2].

d(n) =©(logn) if k =n/2.

9/22

Multiplexer (MUX2: 1)

D[]

-}
ole—=

S MUX

N:

Definition
A MUX-gate is a combinational gate that has three inputs
D[0], D[1],S and one output Y. The functionality is defined by

Y:{D[O] if S=0
D[1] ifS=1.

Note that we could have used the shorter expression Y = D[S] to

define the functionality of a MUX-gate.
10/22

(n:1)-MUX selects on bit out of n

An (n:1)-MUX is a combinational circuit defined as follows:
Input: data input D[n—1:0] and select input S[k-1:0]
where k = [log, n].
Output: Y €{0,1}.

Functionality:

Y = D[(S)].

To simplify the discussion, we will assume in this chapter that n is
a power of 2, namely, n= 2k

Let n=4 and D[3:0] =0101. If S[1:0] =00, then Y = D[0] =1.
If S[1:0] =01, then Y =D[1] =0.

11/22

Implementation

We describe two implementations of (n:1)-MUX.
@ Decoder based - in the recitation (modular design).

@ Tree based - in the lecture (recursive).

12/22

Decoder based (n:1)-MUXx

D[n—1:0] Slk—1:0]

b

DECODER(k)

2k 2F
W2k —1:0]

AND(2F)

Z[2F —1:0] 42"

OR-tree(2")

1

Y

The (n:1)-MmUX design is correct.
The cost of the (n:1)-MUX design is ©(n).

13/22

Decoder based (n:1)-MUX - delay

D[n—1:0] Slk—1:0]

b

DECODER(k)

2k 2F
W2k —1:0]

AND(2F)

Z2F —1:0] y2*

OR-tree(2F)

1

Y

The delay of the (n:1)-mux design is ©(log n).

14/22

Encoder circuit - definition

Definition

An encoder with input length 2”7 and output length n is a
combinational circuit that implements the Boolean function
ENCODER,,.

We denote an encoder with input length 2" and output length n by
ENCODER(n). An ENCODER(n) can be also specified as follows:

Input: y[2"-1:0]€{0,1}".
Output: x[n-1:0]¢€{0,1}".
Functionality: If wt(y) =1, let i denote the index such that

y[i]=1. In this case X should satisfy (x) = /.
Formally:

wi(y) =1 — y[()]=1.

15/22

ENCODER’(n) - a recursive design

For n=1, is simply x[0] < y[1].

Reduction step:
yi[2"t-1:0]=y[2"-1:2"1]
yr[2"H-1:0] = y[2" 1 - 1:0].

Use two ENCODER'(n — 1) with inputs y; and yg. But,

wi(y) =1 = (wit(yr) = 0) v (wt(yr) = 0).

What does an encoder output when input all-zeros?

16/22

Reduction step for ENCODER/(n)

o277t —1:0]
Zyln—1:2771
2n71

ENCODER’(n — 1)

bjn—2:0]yn-1

yr[2"1 = 1:0]
= y[2t —1:0]
2n—1

ENCODER'(n — 1)

aln—2:0]fn-1

[

OR-tree(2"1)

OR(n —1)

/‘/1

xln — 1]

*n—l

zn —2:0]

17/22

Reduction step for ENCODER*(n)

Yr Yr
2 gt J(
OR(Qn_l)
27171
OR-tree(2"1) ENCODER*(n — 1)
1 n—1
z[n — 1] z[n —2:0]

18/22

Performance Analysis of Encoder

c(ENCODER’(n)) = ©(n-2").
(asymptotically) equals the cost of the brute force design...

c(ENCODER*(n)) = ©(2") - c(OR).
d(ENCODER*(n)) = n-d(OR).

19/22

Priority Encoder - PENC(n)

A PENC(n) is a combinational circuit with input length 2" is
defined as follows.

Input: y[2"-1:0]€{0,1}%".
Output: x[n-1:0]€{0,1}", ve{0,1}.
Functionality: v =1<> y #0%". Let i denote the highest index i

such that y[i] = 1. In this case X should satisfy
(x) =i. Formally:

y#0" — y[2"-1:(x)]=0""Wo1.

In other words

Priority encoder deals with situation where more than one input
is active. The output will encode the input index with the higher
“priority” .

20/22

Priority Encoder - PENC(n)

Table: The Truth Table of The Priority Encoder(3)

’ y7 ‘ y6 ‘ yb ‘ y4 ‘ y3 ‘ y2 ‘ yl ‘ y0 H x2 ‘ x1 ‘ x0 ‘ v ‘
0 0 0 0 0 0 0 0 00|00
0 0 0 0 0 0 0 1 00|01
0 0 0 0 0 0 1 |dc. O] 0] 1|1
0 0 0 0 0 1 |dc.|dc.||O0O] 1|01
0 0 0 0 1 |dc.|dc.|dc || O |1]1]1
0 0 0 1 |dc. |dc. |dc|dc. |1]|]0]O0]1
0 0 1 |dc |dc. |dec |dec|dec || 1|0 [|1]1
0 1 |dc |dc |dc|dc|dc|dc| 1 |1]0]1
1 |dc |dc |dc |dc |dec |dec|dec || 1|1 |1]1

Implementation Tips

@ Use “Divide and Conquer”, similar to Tree-based-(n:1)-MUX.

@ Use the “V' signal to choose between the sub-encoders

21/22

Design the following circuit
Input: y[2"-1:0]€{0,1}*".
Output: x[n-1:0]€{0,1}".
Functionality:
x[i] = OR({bin,(H[i]| y[i]=1})
For every 0 < i< n—1. Where bin,(j) is a function

that return the n-bit binary string that represents j
using n bits. (bin,:{0,1,...,2" -1} - {0,1}")

22/22

Design the following circuit
Input: y[2"-1:0]€{0,1}*".
Output: x[n-1:0]€{0,1}".
Functionality:
x[i] = OR({bin,(H[i]| y[i]=1})
For every 0 < i< n—1. Where bin,(j) is a function

that return the n-bit binary string that represents j
using n bits. (bin,:{0,1,...,2" -1} - {0,1}")

An encoder. We were actually asked to implement an extended
function of the encoder.

22/22

