
Digital Logic Systems
Recitation 8: Lower Bounds on cost and delay, Multiplexers,

Decoders, Encoders

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 6, 2019

1/22



When does a function depend on an input?

Definition

A Boolean function f ∶ {0,1}n → {0,1} depends on its i th input if

f↾xi=0 ≠ f↾xi=1.

Example

Consider the Boolean function f (x⃗) = xor2(x1, x2). The function
f depends on the ith input for i = 2. Indeed, f↾x2=1(x1) = not(x1)
and f↾x2=0(x1) = x1.

2/22



The cone of a function

Definition (Cone of a Boolean function)

The cone of a Boolean function f ∶ {0,1}n → {0,1} is defined by

cone(f ) △= {i ∶ f↾xi=0 ≠ f↾xi=1}.

Alternative Definition (Cone of a Boolean function)

Let f ∶ {0,1}n → {0,1}k denote a Boolean function. Then,

i ∈ cone(f )⇐⇒ ∃v⃗ ∈ {0,1}n ∶ f (v) ≠ f (flipi(v⃗)).

Cone if a function f is a set of all the indices that f depends on.

Example

The cone of the Boolean function f (x⃗) = xor2(x1, x2) equals
{1,2} because xor depends on both inputs.

3/22



Example

Example

Consider the following Boolean function:

f (x⃗) =
⎧⎪⎪⎨⎪⎪⎩

0 if ∑i xi < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3
ones are revealed, one can determine the value of f (x⃗).
Nevertheless, the function f (x⃗) depends on all its inputs, and
hence, cone(f ) = {1, . . . ,n}.

4/22



Lower Bound Theorems

Theorem

Let C denote a combinational circuit that implements a Boolean
function f ∶ {0,1}n → {0,1}. If the fan-in of every gate in C is at
most 2, then

c(C) ≥ ∣cone(f )∣ − 1.

Theorem

Let C = (G , π) denote a combinational circuit that implements a
non-constant Boolean function f ∶ {0,1}n → {0,1}. If the fan-in of
every gate in C is at most k , then

tpd(C) ≥ logk ∣cone(f )∣.

The lower bounds are on the function (based on the cone of your
function). Whereas the actual order of growth of the design are on
your design

5/22



Definition of Decoder

Definition

A decoder with input length n:

Input: x[n − 1 ∶ 0] ∈ {0,1}n.

Output: y[2n − 1 ∶ 0] ∈ {0,1}2n

Functionality:

y[i] △=
⎧⎪⎪⎨⎪⎪⎩

1 if ⟨x⃗⟩ = i

0 otherwise.

Number of outputs of a decoder is exponential in the number of
inputs. Note also that exactly one bit of the output y⃗ is set to one.
Such a representation of a number is often termed one-hot
encoding or 1-out-of-k encoding.

Example

Consider a decoder decoder(3). On input x = 101, the output y
equals 00100000.

6/22



An asymptotically optimal decoder design

Base case decoder(1):
The circuit decoder(1) is simply one inverter where:
y[0]← inv(x[0]) and y[1]← x[0].
Reduction rule decoder(n):
We assume that we know how to design decoders with input
length less than n, and design a decoder with input length n.

7/22



Decoder(k)

k

2k

xR[k − 1 : 0]
△
= x[k − 1 : 0]

R[2k − 1 : 0]

Decoder(n− k)

andq,r

y[q · 2k + r]

Q[q]

R[r]

2n−k × 2k

array of

and-gatesQ[2n−k − 1 : 0]

n− k 2n−kxL[n− k − 1 : 0]

x[n− 1 : k]

△
=

Figure: A recursive implementation of decoder(n).

Claim (Correctness)

y[i] = 1 ⇐⇒ ⟨x[n − 1 ∶ 0]⟩ = i .



Performance Analysis of Decoder

Claim

c(n) = Ω(2n) (regardless of the value of k).
c(n) = O(2n) if k = ⌈n/2⌉.

Claim

d(n) = Θ(log n) if k = n/2.

9/22



Multiplexer (mux2 ∶ 1)

mux
0 1

D[0] D[1]

S

Y

Definition

A mux-gate is a combinational gate that has three inputs
D[0],D[1],S and one output Y . The functionality is defined by

Y =
⎧⎪⎪⎨⎪⎪⎩

D[0] if S = 0

D[1] if S = 1.

Note that we could have used the shorter expression Y = D[S] to
define the functionality of a mux-gate.

10/22



(n:1)-mux selects on bit out of n

Definition

An (n:1)-mux is a combinational circuit defined as follows:

Input: data input D[n − 1 ∶ 0] and select input S[k − 1 ∶ 0]
where k = ⌈log2 n⌉.

Output: Y ∈ {0,1}.

Functionality:
Y = D[⟨S⃗⟩].

To simplify the discussion, we will assume in this chapter that n is
a power of 2, namely, n = 2k .

Example

Let n = 4 and D[3 ∶ 0] = 0101. If S[1 ∶ 0] = 00, then Y = D[0] = 1.
If S[1 ∶ 0] = 01, then Y = D[1] = 0.

11/22



Implementation

We describe two implementations of (n:1)-mux.

Decoder based - in the recitation (modular design).

Tree based - in the lecture (recursive).

12/22



Decoder based (n:1)-mux

k

2k2k

1

or-tree(2k)

2k

decoder(k)

S[k − 1 : 0]D[n− 1 : 0]

Y

and(2k)

W [2k − 1 : 0]

Z[2k − 1 : 0]

Claim

The (n:1)-mux design is correct.

Claim

The cost of the (n:1)-mux design is Θ(n).

13/22



Decoder based (n:1)-mux - delay

k

2k2k

1

or-tree(2k)

2k

decoder(k)

S[k − 1 : 0]D[n− 1 : 0]

Y

and(2k)

W [2k − 1 : 0]

Z[2k − 1 : 0]

Claim

The delay of the (n:1)-mux design is Θ(log n).

14/22



Encoder circuit - definition

Definition

An encoder with input length 2n and output length n is a
combinational circuit that implements the Boolean function
encodern.

We denote an encoder with input length 2n and output length n by
encoder(n). An encoder(n) can be also specified as follows:

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n .

Output: x[n − 1 ∶ 0] ∈ {0,1}n.

Functionality: If wt(y⃗) = 1, let i denote the index such that
y[i] = 1. In this case x⃗ should satisfy ⟨x⃗⟩ = i .
Formally:

wt(y⃗) = 1 Ô⇒ y[⟨x⃗⟩] = 1.

15/22



encoder′(n) - a recursive design

For n = 1, is simply x[0]← y[1].
Reduction step:

yL[2n−1 − 1 ∶ 0] = y[2n − 1 ∶ 2n−1]
yR[2n−1 − 1 ∶ 0] = y[2n−1 − 1 ∶ 0].

Use two encoder′(n − 1) with inputs y⃗L and y⃗R . But,

wt(y⃗) = 1⇒ (wt(y⃗L) = 0) ∨ (wt(y⃗R) = 0).

What does an encoder output when input all-zeros?

16/22



Reduction step for encoder′(n)

n− 1 n− 1

or(n− 1)

n− 1

x[n− 2 : 0]

2n−1

1

△
= y[2n − 1 : 2n−1]

△
= y[2n−1 − 1 : 0]

2n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder′(n− 1) encoder′(n− 1)

x[n− 1]

yL[2
n−1 − 1 : 0] yR[2

n−1 − 1 : 0]

17/22



Reduction step for encoder∗(n)

2n−1

n− 1

encoder∗(n− 1)

1

or-tree(2n−1)

x[n− 1]

2n−1

or(2n−1)

2n−1

x[n− 2 : 0]

~yL ~yR

18/22



Performance Analysis of Encoder

Claim

c(encoder′(n)) = Θ(n ⋅ 2n).
(asymptotically) equals the cost of the brute force design...

Claim

c(encoder∗(n)) = Θ(2n) ⋅ c(or).

Claim

d(encoder∗(n)) = n ⋅ d(or).

19/22



Priority Encoder - penc(n)

A penc(n) is a combinational circuit with input length 2n is
defined as follows.

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n .

Output: x[n − 1 ∶ 0] ∈ {0,1}n, v ∈ {0,1}.

Functionality: v = 1⇔ y ≠ 02
n
. Let i denote the highest index i

such that y[i] = 1. In this case x⃗ should satisfy
⟨x⃗⟩ = i . Formally:

y⃗ ≠ 02
n

Ô⇒ y[2n − 1 ∶ ⟨x⃗⟩] = 02
n−1−⟨x⃗⟩ ○ 1.

In other words

Priority encoder deals with situation where more than one input
is active. The output will encode the input index with the higher
“priority”.

20/22



Priority Encoder - penc(n)

Table: The Truth Table of The Priority Encoder(3)

y7 y6 y5 y4 y3 y2 y1 y0 x2 x1 x0 v

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 d.c. 0 0 1 1

0 0 0 0 0 1 d.c. d.c. 0 1 0 1

0 0 0 0 1 d.c. d.c. d.c. 0 1 1 1

0 0 0 1 d.c. d.c. d.c. d.c. 1 0 0 1

0 0 1 d.c. d.c. d.c. d.c. d.c. 1 0 1 1

0 1 d.c. d.c. d.c. d.c. d.c. d.c 1 1 0 1

1 d.c. d.c. d.c. d.c. d.c. d.c. d.c. 1 1 1 1

Implementation Tips

Use “Divide and Conquer”, similar to Tree-based-(n:1)-mux.

Use the “v” signal to choose between the sub-encoders 21/22



Question

Design the following circuit

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n .

Output: x[n − 1 ∶ 0] ∈ {0,1}n.

Functionality:
x[i] = OR({binn(j)[i] ∣ y[j] = 1})

For every 0 ≤ i ≤ n − 1. Where binn(j) is a function
that return the n-bit binary string that represents j
using n bits. (binn ∶ {0,1, . . . ,2n − 1}→ {0,1}n)

Answer

An encoder. We were actually asked to implement an extended
function of the encoder.

22/22



Question

Design the following circuit

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n .

Output: x[n − 1 ∶ 0] ∈ {0,1}n.

Functionality:
x[i] = OR({binn(j)[i] ∣ y[j] = 1})

For every 0 ≤ i ≤ n − 1. Where binn(j) is a function
that return the n-bit binary string that represents j
using n bits. (binn ∶ {0,1, . . . ,2n − 1}→ {0,1}n)

Answer

An encoder. We were actually asked to implement an extended
function of the encoder.

22/22


