Digital Logic Systems

Recitation 9: Shifters, Binary Addition

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 14, 2019

General Announcements

• General Note: YOU ARE WELCOME AT THE "TIGBUR" HOUR EVERY TUESDAY 17:00 AT CLASS 134 WOLFSON BUILDING.

Shifters - ports

Generally, all shifters have the following ports:

- y[n-1:0] output string
- sa[logn 1:0] "shift-amount", controls the amount of bits to be shifted
- left input determines the direction of the shift to be left. (for bi-directional shifters)

Shifters - types

We saw 3 types of shifts and different circuits that implemented them.

- Oyclic shifts "bits pushed from one side of the string, appear on the opposite edge". BARREL-SHIFTER(n) consists of a series of CLS
- 2 Logical shifts "bits that are pushed from the string boundaries - are lost". We saw L-SHIFT which can be implemented by cascading LLS or LRS circuits.
- Arithmetical shifts "same as logical, except for shifting right, the MSB is duplicated". The implementations of ARS and ARITH-SHIFT are left for your home assignment.

Shifters - Tips

- Shifters can be used for fast division/multiplication, as well as for masking.
- As always, we assume free wiring in our course
- Bit reversal enables us to apply left shifts to obtain right shift and vice versa.
- Modular Design of a Shifter We break the sa into its powers of two. Specific circuits (CLS, LLS, ARS) implement these power-of-2 shifts. Finally we cascade these modules to obtain the overall shift.
- You might have already noticed, that signals (inputs/outputs) can be classified into data-signals and control-signals.

L-SHIFT(8) example in Logisim

Pay attention to

- Modular design top-down approach
- Wardwiring wires help us implement shifts, for free!
- **3** Usage of new wiring tools in Logisim: tunnels and splitters.

L-SHIFT(8) example in Logisim

Definition

A L-SHIFT(n) is a combinational circuit defined as follows:

Input:

- $x[n-1:0] \in \{0,1\}^n$,
- $sa[k-1:0] \in \{0,1\}^k$, where $k = \lceil \log_2 n \rceil$, and
- $\ell \in \{0, 1\}$.

Output: $y[n-1:0] \in \{0,1\}^n$.

Functionality: The output \vec{y} satisfies

$$\vec{y} \stackrel{\triangle}{=} \begin{cases} \text{LLS}(\vec{x}, \langle \vec{sa} \rangle) & \text{if } \ell = 1, \\ \text{LRS}(\vec{x}, \langle \vec{sa} \rangle) & \text{if } \ell = 0. \end{cases}$$

L-SHIFT(8) example in Logisim - Top-Down approach

Let us design the top level, consisting of 3 sub-circuits LBS(8,1),LBS(8,2),LBS(8,4).

L-SHIFT(8) example in Logisim - sub module LBS(8,1)

Wise wiring - implements the shift.

L-SHIFT(8) example in Logisim - sub module LBS(8,2)

Again, smart hardwiring is the key

L-SHIFT(8) example in Logisim - sub module LBS(8,4)

And again, smart hardwiring is the key

L-SHIFT(8) example in Logisim - "bit slice"

This is the basic building block, the lowest design level in our project.

12/19

Binary Addition

Binary addition warm-up:

- We know how to represent natural numbers
- 2 We would like to know how to add them together
- 3 Adding two binary-represented numbers is easy.
- We saw 3 different implementations of binary adder

Binary-Adder Logic Basics

Definition

ADDER(n) - a binary adder with input length n is a combinational circuit specified as follows.

Input:
$$A[n-1:0], B[n-1:0] \in \{0,1\}^n$$
, and $C[0] \in \{0,1\}$.

Output:
$$S[n-1:0] \in \{0,1\}^n$$
 and $C[n] \in \{0,1\}$.

Functionality:

$$\langle \vec{S} \rangle + 2^n \cdot C[n] = \langle \vec{A} \rangle + \langle \vec{B} \rangle + C[0].$$
 (1)

Definition (Full-Adder)

FA - a Full-Adder is a combinational circuit with 3 inputs $x, y, z \in \{0, 1\}$ and 2 outputs $c, s \in \{0, 1\}$ that satisfies:

$$2c + s = x + y + z.$$

Claim

$$s = x \oplus y \oplus z$$

$$c = (x \cdot y) \lor (y \cdot z) \lor (x \cdot z)$$

Implementation 1 - Ripple Carry Adder RCA(n)

- Same addition algorithm used for adding numbers by hand.
- Row of *n* Full-Adders connected in a chain.

Claim

For each $0 \le i \le n-1$, the cone of Boolean functions corresponding to C[i+1] and S[i] consists of 2i+3 inputs corresponding to A[i:0], B[i:0], and C[0].

Performance

- $c(RCA(n)) = n \cdot c(FA) = \Theta(n)$.
- $d(RCA(n)) = n \cdot d(FA) = \Theta(n)$.

Implementation 2 - Conditional Sum Adder CSA(n)

basis: A CSA(1) is simply a Full-Adder. **reduction step:**

Performance

- $c(CSA(n)) = \Theta(n^{\log_2 3}).$
- $d(CSA(n)) = \Theta(\log n)$.

Implementation 3 - Compound Adder COMP-ADDER(n)

Definition

COMP-ADDER(n) - a Compound Adder with input length n is a combinational circuit specified as follows.

Input:
$$A[n-1:0], B[n-1:0] \in \{0,1\}^n$$
.
Output: $S[n:0], T[n:0] \in \{0,1\}^{n+1}$.

Functionality:

$$\begin{split} \langle \vec{S} \rangle &= \langle \vec{A} \rangle + \langle \vec{B} \rangle \\ \langle \vec{T} \rangle &= \langle \vec{A} \rangle + \langle \vec{B} \rangle + 1. \end{split}$$

Note that a Compound Adder does not have carry-in input. To simplify notation, the carry-out bits are denoted by S[n] for the sum and by T[n] for the incremented sum.

Implementation 3 - Compound Adder COMP-ADDER(n)

basis: n = 1, we simply use a Full-Adder and a Half-Adder. **reduction step:**

Performance

- $c(\text{COMP-ADDER}(n)) = \Theta(n \log n)$.
- $d(\text{COMP-ADDER}(n)) = \Theta(\log n)$.

שאלה 1 – מעגל צירופי (35 נק')

C(n) להלן המפרט של המעגל הצירופי

$$n=2^k$$
 כאשר $X[n-1:0]\in\{0,1\}^n$ $Y[n-1:0]\in\{0,1\}^n$ $D[k-1:0]\in\{0,1\}^k$ פלט:
$$Z[2n-1:0]\in\{0,1\}^{2n}$$

פונקציונליות:

פלט:

נסמן ב-d את המספר המיוצג על ידי הקלט D בשיטה הבינארית, דהיינו:

$$d \triangleq \langle D[k-1;0] \rangle$$

נסמן ב-z את הביטוי הבא:

$$z \triangleq \langle X[n-1:0] \rangle + \sum_{i=0}^{n-1} Y[i] \cdot 2^{i+n-d}$$

:הפלט Z[2n-1:0] חייב לקיים:

$$\langle Z[2n-1;0]\rangle = z$$

:א מעגל (4) אל מעגל של המפרט אל הוגית לוגיה בצעו סימולציה לוגית א. א. א.

$$X[3:0] = 1010$$

$$Y[3:0] = 1111$$

$$D[1:0] = 10$$

מלאו את הטבלה בהתאם:

	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
X	אין	אין	אין	אין	1	0	1	0
Y	אין	אין	אין	אין	1	1	1	1
D	אין	אין	אין	אין	אין	אין	1	0
Z								

הקלטים: על הקלטים: מעגל (4) איז מעגל של המפרט א לוגית איז סימולציה בצעו (7) איז איז פולציה איז מעגל (7) א

$$X[3;0] = 1010$$

$$Y[3:0] = 1111$$

$$D[1;0]=10$$

מלאו את הטבלה בהתאם:

	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
X	אין	אין	אין	אין	1	0	1	0
Y	אין	אין	אין	אין	1	1	1	0
D	אין	אין	אין	אין	אין	אין	1	0
Z	0	1	0	0	0	1	1	0

ב. (8 נק") עבור קלטים X, Y, D מסוימים, ה-Overflow מוגדר כמאורע שבו Z לא ניתן לייצוג על ידי Z מאורע זה ייתכן במקרה שלנו? אם כן Z תנו דוגמה עם קלטים ספציפיים. אם לא, הראו ש-Z נמצא בתחום המספרים הניתנים לייצוג בשיטה הבינארית בעזרת Z סיביות.

ה-Overflow ייתכן \ לא ייתכן (הקיפו את הנכון)

:הסבר

ב. (8 נק') עבור קלטים X,Y,D מסוימים, ה-Overflow מוגדר כמאורע שבו 2 לא ניתן לייצוג על ידי 2 ססוימים, ה-שחינים לייצוג אורע זה ייתכן במקרה שלנו? אם כן – תנו דוגמה עם קלטים ספציפיים. אם לא, הראו ש-z נמצא בתחום המספרים הניתנים לייצוג בשיטה הבינארית בעזרת 2 סיביות.

ה Overflow-ייתכן \ לא ייתכן (הקיפו את הנכון)

המבר

2n בעלת Z המחרוזת הבינרית Z בעלת Overflow לא אפשרי, ניתן להראות שהמספר z ניתן לייצוג על ידי המחרוזת הבינרית Z בעלת D.Y.X שייתנו את ה-z המקסימלי:

$$z_{max} = \max \left(\langle X[n-1;0] \rangle + 2^{n-d} \sum_{i=0}^{n-1} Y[i] \cdot 2^i \right) = \max \left(\langle X \rangle + 2^{n-d} \langle Y \rangle \right)$$

 $D=0^k$ את הביטוי, אין ביותר: את הקלטים אגדולים אגדולים את הקלטים את הקיטוי, ניקה את הקלטים בשביל למקסם את ה $X=Y=1^n$ בשביל למקסם את ה $Y=1^n$ ביותר: $Y=1^n$

. לא ייתכן Overflow-, אזי המחרוזת של הסיביות על ידי ביטוי ניתן לביטוי אזי אזי אזי מכייון די אזי ומכיוון ביער אזי z_{max}

