
Digital Logic Systems
Recitation 9: Shifters, Binary Addition

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 14, 2019

1/19



General Announcements

1 General Note: YOU ARE WELCOME AT THE “TIGBUR”
HOUR EVERY TUESDAY 17:00 AT CLASS 134 WOLFSON
BUILDING.

2/19



Shifters - ports

Generally, all shifters have the following ports:
1 x[n − 1 ∶ 0] - input string
2 y[n − 1 ∶ 0] - output string
3 sa[logn − 1 ∶ 0] - “shift-amount”, controls the amount of bits

to be shifted
4 left - input determines the direction of the shift to be left.

(for bi-directional shifters)

Shifter

X[n-1:0]

Y[n-1:0]

sa[k-1:0]

left

3/19



Shifters - types

We saw 3 types of shifts and different circuits that implemented
them.

1 Cyclic shifts - ”bits pushed from one side of the string,
appear on the opposite edge”. barrel-shifter(n) consists
of a series of cls

2 Logical shifts - ”bits that are pushed from the string
boundaries - are lost”. We saw l-shift which can be
implemented by cascading lls or lrs circuits.

3 Arithmetical shifts - ”same as logical, except for shifting
right, the MSB is duplicated”. The implementations of ars
and arith-shift are left for your home assignment.

4/19



Shifters - Tips

1 Shifters can be used for fast division/multiplication, as well as
for masking.

2 As always, we assume free wiring in our course

3 Bit reversal enables us to apply left shifts to obtain right shift
and vice versa.

4 Modular Design of a Shifter - We break the sa into its powers
of two. Specific circuits (cls, lls, ars) implement these
power-of-2 shifts. Finally we cascade these modules to obtain
the overall shift.

5 You might have already noticed, that signals (inputs/outputs)
can be classified into data-signals and control-signals.

5/19



l-shift(8) example in Logisim

Pay attention to

1 Modular design - top-down approach

2 Hardwiring - wires help us implement shifts, for free!

3 Usage of new wiring tools in Logisim: tunnels and splitters.

6/19



l-shift(8) example in Logisim

Definition

A l-shift(n) is a combinational circuit defined as follows:

Input:

x[n − 1 ∶ 0] ∈ {0,1}n,
sa[k − 1 ∶ 0] ∈ {0,1}k , where k = ⌈log2 n⌉, and
` ∈ {0,1}.

Output: y[n − 1 ∶ 0] ∈ {0,1}n.

Functionality: The output y⃗ satisfies

y⃗
△

=

⎧
⎪⎪
⎨
⎪⎪
⎩

lls(x⃗ , ⟨s⃗a⟩) if ` = 1,

lrs(x⃗ , ⟨s⃗a⟩) if ` = 0.

7/19



l-shift(8) example in Logisim - Top-Down approach

Let us design the top level, consisting of 3 sub-circuits
lbs(8,1),lbs(8,2),lbs(8,4).

8/19



l-shift(8) example in Logisim - sub module lbs(8,1)

Wise wiring - implements the shift.

9/19



l-shift(8) example in Logisim - sub module lbs(8,2)

Again, smart hardwiring is the key

10/19



l-shift(8) example in Logisim - sub module lbs(8,4)

And again, smart hardwiring is the key

11/19



l-shift(8) example in Logisim - “bit slice”

This is the basic building block, the lowest design level in our
project.

12/19



Binary Addition

Binary addition warm-up:

1 We know how to represent natural numbers

2 We would like to know how to add them together

3 Adding two binary-represented numbers is easy.

4 We saw 3 different implementations of binary adder

13/19



Binary-Adder Logic Basics

Definition

adder(n) - a binary adder with input length n is a combinational
circuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C [0] ∈ {0,1}.

Output: S[n − 1 ∶ 0] ∈ {0,1}n and C [n] ∈ {0,1}.

Functionality:
⟨S⃗⟩ + 2n ⋅ C [n] = ⟨A⃗⟩ + ⟨B⃗⟩ + C [0]. (1)

Definition (Full-Adder)

fa - a Full-Adder is a combinational circuit with 3 inputs
x , y , z ∈ {0,1} and 2 outputs c , s ∈ {0,1} that satisfies:

2c + s = x + y + z .

Claim

s = x ⊕ y ⊕ z
c = (x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z) 14/19



Implementation 1 - Ripple Carry Adder rca(n)

sc
fa0

S[0]

A[0]B[0]

sc
fa1

A[1]B[1]

C[2] S[1]C[n− 2]

sc
fan−2

sc
fan−1

S[n− 2]C[n− 1]S[n− 1]C[n] C[1]

A[n− 2]B[n− 2]A[n− 1]B[n− 1]

C[0]

Same addition algorithm used for adding numbers by hand.

Row of n Full-Adders connected in a chain.

Claim

For each 0 ≤ i ≤ n − 1, the cone of Boolean functions corresponding
to C [i + 1] and S[i] consists of 2i + 3 inputs corresponding to
A[i ∶ 0],B[i ∶ 0], and C [0].

Performance

c(rca(n)) = n ⋅ c(fa) = Θ(n).

d(rca(n)) = n ⋅ d(fa) = Θ(n).

15/19



Implementation 2 - Conditional Sum Adder csa(n)
basis: A csa(1) is simply a Full-Adder.
reduction step:

1 0

csa(k)

k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

C[0]

S[k − 1 : 0]

C[k]

csa(n− k)

n− k + 1

csa(n− k)

n− k + 1

n− k + 1

B[n− 1 : k] A[n− 1 : k]

n− k n− k

C0[n] · S0[n− 1 : k]

B[n− 1 : k] A[n− 1 : k]

n− k n− k

C1[n] · S1[n− 1 : k]

mux(n− k + 1)

C[n] · S[n− 1 : k]

01

Performance

c(csa(n)) = Θ (nlog2 3).

d(csa(n)) = Θ(log n).

16/19



Implementation 3 - Compound Adder comp-adder(n)

Definition

comp-adder(n) - a Compound Adder with input length n is a
combinational circuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n.

Output: S[n ∶ 0],T [n ∶ 0] ∈ {0,1}n+1.

Functionality:

⟨S⃗⟩ = ⟨A⃗⟩ + ⟨B⃗⟩

⟨T⃗ ⟩ = ⟨A⃗⟩ + ⟨B⃗⟩ + 1.

Note that a Compound Adder does not have carry-in input. To
simplify notation, the carry-out bits are denoted by S[n] for the
sum and by T [n] for the incremented sum.

17/19



Implementation 3 - Compound Adder comp-adder(n)
basis: n = 1, we simply use a Full-Adder and a Half-Adder.
reduction step:

1 01 0

T ′[k] S′[k]

n− k + 1

mux(n− k + 1)

S[n : k]

S′[k]

n− k + 1

mux(n− k + 1)

T [n : k]

T ′[k]

T”[n : k] S”[n : k]

comp-adder(n− k)

n− k + 1 n− k + 1

A[n− 1 : k]

n− k

B[n− 1 : k]

n− k

T [k − 1 : 0]

T ′[k : 0]

S[k − 1 : 0]

S′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

Performance

c(comp-adder(n)) = Θ(n log n).

d(comp-adder(n)) = Θ(log n).
18/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19



Problem on Adders and Shifters

19/19


