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Sum of Products

Recall the following definitions.

Definition

A variable or a negation of a variable is called a literal.

Definition
A formula that is the AND of literals is called a product term.

Definition

A simple product term p is a minterm with respect to a set U of
variables if vars(p) = U.

A minterm is a simple product term, and therefore, every variable
in U appears exactly once in p.
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Minterms of a Boolean Function

A

For a v € {0,1}", define the minterm p, to be p, = (¢ - 3---£},),
where:

E‘.’é X,' ifV,':]_
"X ifvi=0.

| A

Definition

Let £ (1) denote the set

1) 2 {ve{0,1}"| f(v)=1}.

Definition

The set of minterms of f is defined by

M(F) 2 {p, | ve (1)}
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Sum of Products

Theorem

Every Boolean function f : {0,1}" — {0,1} that is not a constant
zero is represented by the sum of the minterms in M(f).

Given f, generate the corresponding SOP formula

© Find f (1) - all the input vectors v € {0,1}" such that
f(v)=1

@ Convert the input vectors v € {0,1}" into minterms
p="h-...-l, by replacing vi=0— ;= X; and v; =1 - [; = X

© SOP¢ = The disjunction (OR-connective) of all the minterms
p is the desired representation.

A\
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Sum of Products: Example

Represent the following Boolean functions as a SOP formula:
(i)f(a, b) = max{a, b}, (ii) g(a, b) = min{a, b}.
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Product of Sums

Every Boolean function f : {0,1}" — {0,1} that is not a constant
one can be represented by a product of maxterms.

Creating POS

Qg=f
@ Find g71(1) - all the input vectors v € {0,1}" such that
glv)=1

© Convert the input vectors v € {0,1}" into minterms
p="h-...-I, by replacing vi=0— i =X; and vi =1 - [; = X

© SOP; = The sum of all the minterms p is the desired
representation.

@ POS; = DM(SOP,)
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Product of Sums: Example

A similar “ritual” ...

Represent the following Boolean functions as an POS formula:
(i) f(a,b) = min{a, b}, (ii) h(a, b) = max{a, b}.
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The finite Field GF(2)

Every Boolean function f : {0,1}" — {0,1} can be represented by a
polynomial in GF(2)[U], where U = {X,..., Xy}

Creating a polynomial for f
@ easy: f is constant.
o f1(1)2{ve{0,1}"|f(v)=1}.
@ For each v e f~1(1), we define the product p,. The
polynomial p € GF(2)[U] is defined as follows.

pz D »p.

vef~1(1)

o XoX<=0 X @1 < not(X) X0 X
e (XoY) Ze(X-Z)® (Y- Z), forevery X,Y,Z€{0,1}.
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GF (2):Example

Represent the Boolean function carry : {0,1}3 — {0,1} by a
polynomial in GF(2).

1 fa+b+c>2

0 otherwise.

carry(a, b,c) = {

c ‘ carry(a,b,c)

o]
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3bc+abc+abé+abc

a b ¢ ‘ carry(a,b,c)

0

0
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GF (2):Example

3bc+abc+abé+abc
< (a@1l)bcda(b® 1)cdab(c @ 1)®abc

a b ¢ ‘ carry(a,b,c)
0 0 O 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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GF (2):Example

3bc+abc+abé+abc

< (a@1l)bcda(b® 1)cdab(c @ 1)®abc
< abc @ bc ® abc ® ac @ abc ® ab @ abc
< abc ® abc ® abc ® abc ® bc ® ac ® ab
< 0®0@® bcdac® ab

< bc®ac® ab

a b ¢ ‘ carry(a,b,c)
0 0 O 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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GF (2):Question

When can you swap the OR with XOR?
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Example - SOP is not a compact representation

Let :{0,1}" — {0,1} be a Boolean function defined as follows.

1 ifVI<j<|5]: X = Xna1sj
0 otherwise.

f(X) é{

o Compute M(f) for n=37?
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Example - SOP is not a compact representation

Let :{0,1}" — {0,1} be a Boolean function defined as follows.

fo 2! ifVL<j<|5]: X = Xna1sj
0 otherwise.

o Compute M(f) for n=37?
{(Xi- X2 X3), (Xi-Xa- X3), (Xi-Xa-X3), (Xi-Xa-X3)}
e Compute M(f) for general n?
M(f) ={(h- ... I,) such that ¥1<j < |2|: either [;,/ps1-; are
both negated or both positive}
[M(f)] = 2I]
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Example - a compact formula

Let f:{0,1}" — {0,1} be a Boolean function defined as follows.

1 ifv1<j<|2]: Xj=Xn1e
0 otherwise.

f(X) = {

@ Think of a pe GF(2)
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Example - a compact formula

Let f:{0,1}" — {0,1} be a Boolean function defined as follows.

FX) 2 1 ifv1<j<|2]: Xj=Xn1e
0 otherwise.
@ Think of a pe GF(2)
Hlsjs[gj (Xj @ Xns1-j) @1
Success: We dropped from an exponential number of terms to
a linear number!

v
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Digital Abstraction - Transistors

@ The logical gates (AND, OR,...) are composed of transistors,
which are analog devices that allow switching.
o Widely used MOSFET transistor has 2 types: N and P

high
high _| high _4 cutoff
low
high
low _| cutoff low _4
low
NMOS PMOS

@ There are many other transistors (BJT, FinFet, JFET,...)
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Digital Abstraction - CMQOS technology

@ Complementary MOS employs 2 complementary circuits :
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Digital Abstraction - CMQOS technology

e Complementary MOS employs 2 complementary circuits :
@ PUN - contains only PMOS transistors. When conducting,
pulls the output to high voltage (logical 1)

Inputs

PWR

1

Pull up Network
(PUN)
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Digital Abstraction - CMQOS technology

e Complementary MOS employs 2 complementary circuits :
@ PUN - contains only PMOS transistors. When conducting,
pulls the output to high voltage (logical 1)
@ PDN - contains only NMOS transistors. When conducting,
pulls the output to low voltage (logical 0)
e PDN and PUN do not conduct at the same time (only for a

short period of time, during the changes in the input)

Inputs

PWR

1

Pull up Network
(PUN)
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Digital Abstraction - Example

Determine the Boolean function/formula implemented by the
following CMQOS circuit.

PWR
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PWR

From PDN: f = (xVy) Az
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Digital Abstraction - Example

Determine the Boolean function/formula implemented by the
following CMQOS circuit.

PWR

From PDN: f = (xVy) Az )
From De-Morgan Dual: f = DM(f)=(xAy)VvZz
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