Digital Logic Systems

Recitation 6: Representation of Boolean Functions by Formulas, Digital Abstraction

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 11, 2019

Sum of Products

Recall the following definitions.

Definition

A variable or a negation of a variable is called a literal.

Definition

A formula that is the AND of literals is called a product term.

Definition

A simple product term p is a minterm with respect to a set U of variables if vars(p) = U.

A minterm is a simple product term, and therefore, every variable in U appears exactly once in p.

Minterms of a Boolean Function

Definition

For a $v \in \{0,1\}^n$, define the minterm p_v to be $p_v \stackrel{\triangle}{=} (\ell_1^v \cdot \ell_2^v \cdots \ell_n^v)$, where:

$$\ell_i^{\mathsf{v}} \stackrel{\triangle}{=} \begin{cases} X_i & \text{if } v_i = 1\\ \bar{X}_i & \text{if } v_i = 0. \end{cases}$$

Definition

Let $f^{-1}(1)$ denote the set

$$f^{-1}(1) \stackrel{\triangle}{=} \{ v \in \{0,1\}^n \mid f(v) = 1 \}.$$

Definition

The set of minterms of f is defined by

$$M(f) \stackrel{\triangle}{=} \{p_v \mid v \in f^{-1}(1)\}.$$

Sum of Products

Theorem

Every Boolean function $f: \{0,1\}^n \to \{0,1\}$ that is not a constant zero is represented by the sum of the minterms in M(f).

Given f, generate the corresponding SOP formula

- Find $f^{-1}(1)$ all the input vectors $v \in \{0,1\}^n$ such that f(v) = 1
- ② Convert the input vectors $v \in \{0,1\}^n$ into minterms $p = l_1 \cdot ... \cdot l_n$ by replacing $v_i = 0 \rightarrow l_i = \bar{X}_i$ and $v_i = 1 \rightarrow l_i = X_i$
- § SOP_f = The disjunction (OR-connective) of all the minterms p is the desired representation.

Sum of Products: Example

Example

Represent the following Boolean functions as a SOP formula:

$$(i)f(a,b) = \max\{a,b\}, (ii) g(a,b) = \min\{a,b\}.$$

Product of Sums

$\mathsf{Theorem}$

Every Boolean function $f: \{0,1\}^n \to \{0,1\}$ that is not a constant one can be represented by a product of maxterms.

Creating POS

- ② Find $g^{-1}(1)$ all the input vectors $v \in \{0,1\}^n$ such that g(v) = 1
- **3** Convert the input vectors $v \in \{0,1\}^n$ into minterms $p = l_1 \cdot ... \cdot l_n$ by replacing $v_i = 0 \rightarrow l_i = \bar{X}_i$ and $v_i = 1 \rightarrow l_i = X_i$
- SOP_g = The sum of all the minterms p is the desired representation.

Product of Sums: Example

A similar "ritual"...

Example

Represent the following Boolean functions as an POS formula:

(i)
$$f(a, b) = \min\{a, b\}$$
, (ii) $h(a, b) = \max\{a, b\}$.

The finite Field GF(2)

$\mathsf{Theorem}$

Every Boolean function $f: \{0,1\}^n \to \{0,1\}$ can be represented by a polynomial in GF(2)[U], where $U = \{X_1, \dots, X_n\}$.

Creating a polynomial for f

- easy: f is constant.
- $f^{-1}(1) \stackrel{\triangle}{=} \{ v \in \{0,1\}^n \mid f(v) = 1 \}.$
- For each $v \in f^{-1}(1)$, we define the product p_v . The polynomial $p \in GF(2)[U]$ is defined as follows.

$$p\stackrel{\triangle}{=} \bigoplus_{v\in f^{-1}(1)} p_v.$$

Properties

- $X \oplus X \Leftrightarrow 0$ $X \oplus 1 \Leftrightarrow not(X)$ $X \oplus 0 \Leftrightarrow X$
- $(X \oplus Y) \cdot Z \Leftrightarrow (X \cdot Z) \oplus (Y \cdot Z)$, for every $X, Y, Z \in \{0, 1\}$.

Example

Represent the Boolean function $carry: \{0,1\}^3 \to \{0,1\}$ by a polynomial in GF(2).

$$carry(a, b, c) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } a + b + c \ge 2 \\ 0 & \text{otherwise.} \end{cases}$$

а	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

9/17

 $\bar{a}bc+a\bar{b}c+ab\bar{c}+abc$

а	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$\bar{a}bc + a\bar{b}c + ab\bar{c} + abc$$

$$\Leftrightarrow (a \oplus 1)bc \oplus a(b \oplus 1)c \oplus ab(c \oplus 1) \oplus abc$$

a	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $\bar{a}bc+a\bar{b}c+ab\bar{c}+abc$ $\Leftrightarrow (a\oplus 1)bc\oplus a(b\oplus 1)c\oplus ab(c\oplus 1)\oplus abc$ $\Leftrightarrow abc\oplus bc\oplus abc\oplus ac\oplus abc\oplus ab\oplus abc$

а	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

```
\bar{a}bc+a\bar{b}c+ab\bar{c}+abc

\Leftrightarrow (a\oplus 1)bc\oplus a(b\oplus 1)c\oplus ab(c\oplus 1)\oplus abc

\Leftrightarrow abc\oplus bc\oplus abc\oplus ac\oplus abc\oplus ab\oplus abc

\Leftrightarrow abc\oplus abc\oplus abc\oplus abc\oplus bc\oplus ac\oplus ab
```

а	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $\bar{a}bc+a\bar{b}c+ab\bar{c}+abc$ $\Leftrightarrow (a\oplus 1)bc\oplus a(b\oplus 1)c\oplus ab(c\oplus 1)\oplus abc$ $\Leftrightarrow abc\oplus bc\oplus abc\oplus ac\oplus abc\oplus ab\oplus abc$ $\Leftrightarrow abc\oplus abc\oplus abc\oplus abc\oplus bc\oplus ac\oplus ab$ $\Leftrightarrow 0\oplus 0\oplus bc\oplus ac\oplus ab$

а	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $\bar{a}bc+a\bar{b}c+ab\bar{c}+abc$ $\Leftrightarrow (a\oplus 1)bc\oplus a(b\oplus 1)c\oplus ab(c\oplus 1)\oplus abc$ $\Leftrightarrow abc\oplus bc\oplus abc\oplus ac\oplus abc\oplus ab\oplus abc$ $\Leftrightarrow abc\oplus abc\oplus abc\oplus abc\oplus bc\oplus ac\oplus ab$ $\Leftrightarrow 0\oplus 0\oplus bc\oplus ac\oplus ab$ $\Leftrightarrow bc\oplus ac\oplus ab$

а	b	С	carry(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

GF(2): Question

Question

When can you swap the OR with XOR?

Example

Let $f:\{0,1\}^n \to \{0,1\}$ be a Boolean function defined as follows.

$$f(X) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \forall 1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor : \ X_j = X_{n+1-j} \\ 0 & \text{otherwise.} \end{cases}$$

• Compute M(f) for n = 3?

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function defined as follows.

$$f(X) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \forall 1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor : \ X_j = X_{n+1-j} \\ 0 & \text{otherwise.} \end{cases}$$

• Compute M(f) for n = 3? $\{(X_1 \cdot X_2 \cdot X_3), (X_1 \cdot \bar{X}_2 \cdot \bar{X}_3), (\bar{X}_1 \cdot \bar{X}_2 \cdot \bar{X}_3), (\bar{X}_1 \cdot \bar{X}_2 \cdot \bar{X}_3)\}$

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function defined as follows.

$$f(X) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \forall 1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor : \ X_j = X_{n+1-j} \\ 0 & \text{otherwise.} \end{cases}$$

- Compute M(f) for n = 3? $\{(X_1 \cdot X_2 \cdot X_3), (X_1 \cdot \bar{X}_2 \cdot X_3), (\bar{X}_1 \cdot X_2 \cdot \bar{X}_3), (\bar{X}_1 \cdot \bar{X}_2 \cdot \bar{X}_3)\}$
- Compute M(f) for general n?

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function defined as follows.

$$f(X) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \forall 1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor : \ X_j = X_{n+1-j} \\ 0 & \text{otherwise.} \end{cases}$$

- Compute M(f) for n = 3? $\{(X_1 \cdot X_2 \cdot X_3), (X_1 \cdot \bar{X}_2 \cdot X_3), (\bar{X}_1 \cdot X_2 \cdot \bar{X}_3), (\bar{X}_1 \cdot \bar{X}_2 \cdot \bar{X}_3)\}$
- Compute M(f) for general n? $M(f) = \{(I_1 \cdot \ldots \cdot I_n) \text{ such that } \forall 1 \leq j \leq \lfloor \frac{n}{2} \rfloor : \text{ either } I_j, I_{n+1-j} \text{ are both negated or both positive}\}$ $|M(f)| = 2^{\lceil \frac{n}{2} \rceil}$

Example - a compact formula

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function defined as follows.

$$f(X) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \forall 1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor : \ X_j = X_{n+1-j} \\ 0 & \text{otherwise.} \end{cases}$$

• Think of a $p \in GF(2)$

Example - a compact formula

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function defined as follows.

$$f(X) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \forall 1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor : \ X_j = X_{n+1-j} \\ 0 & \text{otherwise.} \end{cases}$$

• Think of a $p \in GF(2)$

$$\prod_{1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor} (X_j \oplus X_{n+1-j}) \oplus 1$$

Success: We dropped from an exponential number of terms to a linear number!

Digital Abstraction - Transistors

- The logical gates (AND, OR,...) are composed of transistors, which are analog devices that allow switching.
- Widely used MOSFET transistor has 2 types: N and P

• There are many other transistors (BJT, FinFet, JFET,...)

• Complementary MOS employs 2 complementary circuits :

- Complementary MOS employs 2 complementary circuits :
 - PUN contains only PMOS transistors. When conducting, pulls the output to high voltage (logical 1)

- Complementary MOS employs 2 complementary circuits :
 - PUN contains only PMOS transistors. When conducting, pulls the output to high voltage (logical 1)
 - PDN contains only NMOS transistors. When conducting, pulls the output to low voltage (logical 0)

- Complementary MOS employs 2 complementary circuits :
 - PUN contains only PMOS transistors. When conducting, pulls the output to high voltage (logical 1)
 - PDN contains only NMOS transistors. When conducting, pulls the output to low voltage (logical 0)
- PDN and PUN do not conduct at the same time (only for a short period of time, during the changes in the input)

Digital Abstraction - Example

Determine the Boolean function/formula implemented by the following CMOS circuit.

Digital Abstraction - Example

Determine the Boolean function/formula implemented by the following CMOS circuit.

From PDN: $\bar{f} = (x \lor y) \land z$

Digital Abstraction - Example

Determine the Boolean function/formula implemented by the following CMOS circuit.

From PDN: $\bar{f} = (x \lor y) \land z$

From De-Morgan Dual: $f = DM(\bar{f}) = (\bar{x} \wedge \bar{y}) \vee \bar{z}$