
Digital Logic Systems
Recitation 5: Propositional Logic contd. & Asymptotics

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 30, 2019

1/29



The De Morgan dual

Algorithm 1 DM(φ) - An algorithm for evaluating the De Morgan
dual of a Boolean formula φ ∈ BF({X1, . . . ,Xn},{¬,or,and}).

1 Base Cases: (parse tree of size 1 or 2)
1 If φ = 0, then return 1.
2 If φ = 1, then return 0.
3 If φ = Xi , then return (¬Xi).
4 If φ = (¬0), then return 0.
5 If φ = (¬1), then return 1.
6 If φ = (¬Xi), then return Xi .

2 Reduction Rules: (parse tree of size at least 3)

1 If φ = (¬φ1), then return (¬DM(φ1)).
2 If φ = (φ1 ⋅ φ2), then return (DM(φ1) +DM(φ2)).
3 If φ = (φ1 + φ2), then return (DM(φ1) ⋅DM(φ2)).

Example

DM(¬(X +Y )) =?
2/29



The De Morgan dual (cont.)

Theorem

For every Boolean formula φ, DM(φ) is logically equivalent to
(¬φ).

3/29



Negation Normal Form

A formula is in negation normal form if negation is applied only
directly to variables.

Definition

A Boolean formula φ ∈ BF({X1, . . . ,Xn},{¬,or,and}) is in
negation normal form if the parse tree (G , π) of φ satisfies the
following condition. If a vertex in G is labeled by negation (i.e.,
π(v) = ¬), then v is a parent of a leaf labeled by a variable.

Example

The formula (¬X ) ⋅ (¬Y ) is in negation normal form.

The formulas (¬0), ¬(A ⋅B), not(not(X )) are not in
negation normal form.

Theorem

Let φ ∈ BF({X1, . . . ,Xn},{¬,or,and}). Then, NNF (φ) is
logically equivalent to φ and in negation normal form.

4/29



Negation Normal Form (cont.)

Algorithm 2 NNF(φ) - An algorithm for comput-
ing the negation normal form of a Boolean formula
φ ∈ BF({X1, . . . ,Xn},{¬,or,and}).

1 Base Cases: (parse tree of size 1 or 2)
1 If φ ∈ {0,1,Xi , (¬Xi)}, then return φ.
2 If φ = (¬0), then return 1.
3 If φ = (¬1), then return 0.

2 Reduction Rules: (parse tree of size at least 3)
1 If φ = (¬φ1), then return DM(NNF(φ1)).
2 If φ = (φ1 ⋅ φ2), then return (NNF(φ1) ⋅NNF(φ2)).
3 If φ = (φ1 + φ2), then return (NNF(φ1) +NNF(φ2)).

Example

NNF (¬¬X ) =?

NNF (¬¬¬X ) =?.

5/29



Asymptotics

6/29



Order of Growth - Popular functions f (n)

7/29



Order of Growth: Reminder

Definition (7.1)

Let f ,g ∶ N→ R≥ denote two functions.

1 We say that g(n) = O(f (n)), if there exist constants
c1, c2 ∈ R≥ such that, for every n ∈ N,

g(n) ≤ c1 ⋅ f (n) + c2.

2 We say that g(n) = Ω(f (n)), if there exist constants c3 ∈ R≥,
c4 ∈ R≥ such that, for every n ∈ N,

g(n) ≥ c3 ⋅ f (n) + c4.

3 We say that g(n) = Θ(f (n)), if g(n) = O(f (n)) and
g(n) = Ω(f (n)).

8/29



Order of Growth: Alternative Definition

Definition (7.2)

Let f ,g ∶ N→ R≥ denote two functions.

1 We say that g(n) = O(f (n)), if there exist constants c ∈ R≥

and N ∈ N, such that,

∀n > N ∶ g(n) ≤ c ⋅ f (n) .

2 We say that g(n) = Ω(f (n)), if there exist constants d ∈ R≥

and N ∈ N, such that,

∀n > N ∶ g(n) ≥ d ⋅ f (n) .

3 We say that g(n) = Θ(f (n)), if g(n) = O(f (n)) and
g(n) = Ω(f (n)).

9/29



Lemma

Definitions 7.1,7.2 are equivalent if f (n) ≥ 1 and g(n) ≥ 1, for
every n.

Proof.

On the whiteboard.

10/29



Order of Growth - Quick Arithmetics

It is often easy to determine the order of growth for polynomials
and exponentials. Just take the dominant member:

n10 + n9 + n8 + n2 + 10 = Θ(n10)
3n + 2n + n1000 = Θ(3n)

All the constant numbers are O(1).

0 = Θ(1)
3240009100 = Θ(1)

Logs of all bases have the same order of growth

ln(n) = Θ(log2(n))
log10(n) = Θ(log2(n))

11/29



Reminder: Is it enough to solve for powers of 2?

In the following lemma we show that, under reasonable conditions,
it suffices to consider powers of two when bounding the rate of
growth.

Lemma (7.2)

Assume that:

1 The functions f (n) and g(n) are both monotonically
nondecreasing.

2 The constant ρ satisfies, for every k ∈ N,

ρ ≥ g(2k+1)
g(2k) .

If f (2k) = O(g(2k)), then f (n) = O(g(n)).

12/29



Revisiting: Is it enough to solve for powers of 2? Yes!

An analogous lemma that states that f (n) = Ω(g(n)) can be

proved if g(2k+1)
g(2k) ≥ ρ, for a constant ρ The lemma is as follows.

Lemma (7.3)

Assume that:

1 The functions f (n) and g(n) are both monotonically
nondecreasing.

2 The constant ρ satisfies, for every k ∈ N,

ρ ≤ g(2k+1)
g(2k) .

If f (2k) = Ω(g(2k)), then f (n) = Ω(g(n)).

13/29



Example - 1

Let g(n) △= log3 n. We claim that g(n) = Θ(log2 n)

Proof.

Recall that for every a,b, c ∈ R, a, c ≠ 1,

loga b =
logc b

logc a
. (1)

Hence, log3 n =
log2 n
log2 3

. Since, 5/8 < 1
log2 3

< 2/3 is a constant, then

c = 2/3,d = 5/8,N = 0 satisfy the conditions in Definition 7.2.

Hence, when considering the order of growth of log functions with
a constant base, that is logc n and logd n where c,d are constants,
we may omit the base and simply refer the order of growth of these
functions as O(log n), Ω(log n) and Θ(log n).

14/29



Example - 2

Let g(n) △= nlog2 c . We claim that g(n) = Θ(c log2 n).

Proof.

We prove the following stronger claim.

nlog2 c = c log2 n . (2)

That will conclude the proof, since for every two functions
f ,g ∶ N→ R≥, if f = g then f (n) = Θ(g(n)) and g(n) = Θ(f (n)).
Let us apply the log2 function on the left-hand side and the
right-hand side of Eq. 2. We get

log2(nlog2 c)
?= log2(c log2 n)⇔ log2 c ⋅ log2 n = log2 n ⋅ log2 c , (3)

Where the transition follows from the fact that log(ab) = b ⋅ log(a).
Since Eq. 3 holds with equality, and since the log function is
one-to-one, then their arguments are equal as well, i.e.,
nlog2 c = c log2 n, as required.

15/29



Example - 3: Recurrence 1.

Consider the recurrence for every n ∈ N+

f (n) △=
⎧⎪⎪⎨⎪⎪⎩

1 if n = 1

log2(n) + f (⌊n2 ⌋) if n > 1.
(4)

Lemma

Find the rate of growth of the function f (n) defined in Eq. 4.

16/29



Example - 3: Solution (1/3) - assume n = 2k and guess

Let’s translate the f (n) into terms of k

f (n) △=
⎧⎪⎪⎨⎪⎪⎩

1 if n = 1

log2(n) + f (⌊n2 ⌋) if n > 1.
(5)

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

k + f (2k-1) if k > 0.
(6)

Now, let’s try to gain a guess for a closed form expression of f (2k):

f (2k) = k + f (2k−1) = k + (k − 1) + f (2k−2)

This gives us the intuition that f (2k) can be expressed as:

f (2k) = 1 +
k

∑
i=1

i = 1 + k(k + 1)
2

17/29



Example - 3: Solution (2/3) - prove your guess

We will prove by an induction on k, that the closed form

f (2k) = 1 + k(k+1)
2 equals the recursive definition of f (2k).

Basis k=0: closed form f (20) = 0 ⋅ 0+12 + 1 = 1 is consistent
with the recursive form for f (1) = 1

Hypothesis: f (2k) = 1 + k(k+1)
2

Step: According to recursion rule: f (2k+1) = k + 1 + f (2k)
From induction hypothesis this is equal to

k+1+1+ k(k + 1)
2

= 1+ 2(k + 1)
2

+ k(k + 1)
2

= 1+ (k + 1)(k + 2)
2

This completes our proof by induction and we are clear to
state that

f (2k) = 1 + k(k + 1)
2

= Θ(1 + k(k + 1)
2

) = Θ(k2)

18/29



Example - 3: Solution (3/3) - generalize to every n ∈ N+

We would like to show that Lemmas 7.2 and 7.3 hold:
1 Both f and g are monotonous non-descending. The f (n) is a

recurrence that with each recursive call, can only grow (see
the positive terms in the Eq. 4). Whereas the g(n) is the well
known logarithm, which is also known to be non-descending.

2 Now we have to show that g(2k+1)
g(2k) is bounded by two

constants ρ1 and ρ2:

g(2k+1)
g(2k) = (k + 1)2

k2
= 1 + 2

k
+ 1

k2

Observe that the rightmost expression can be bounded:

ρ1 = 1 ≤ 1 + 2

k
+ 1

k2
≤ 4 = ρ2

Explanation: 0 ≤ 2/k ≤ 2 and 0 ≤ 1/k2 ≤ 1

Since Lemmas 7.2 and 7.3 hold, we generalize our Θ bound:

f (n) = Θ((log n)2)
19/29



Recurrence Trees

Recurrence tree is a way of illustrating the recursive calls of a
function.

Given a recursive function f (n):

The root will represent the initial function call
The internal nodes represent the intermediate calls
The leaves represent reaching the base rules

Each node of a tree is associated with a function argument
and a penalty.

20/29



Recurrence Trees - The Recipe

1 Given f (n) - construct a tree, assume n = 2k if necessary.

2 Determine L - the number of tree levels.

3 For every level i ∈ [0, ..,L − 1] determine penaltyi
4 Obtain a guess f (2k) = ∑L−1

i=0 penaltyi
5 Generalize the guess to obtain terms of f (n)

21/29



Recurrence Trees - Example

Question

Find the Θ bound for the following recursive f (n):

f (n) △=
⎧⎪⎪⎨⎪⎪⎩

1 if n = 1

2 ⋅ f (⌊n2 ⌋) + n if n > 1.

22/29



Recurrence Trees - Example - Assume n = 2k

Question

Find the Θ bound for the following recursive f (n):

f (n) △=
⎧⎪⎪⎨⎪⎪⎩

1 if n = 1

2 ⋅ f (⌊n2 ⌋) + n if n > 1.

We assume n = 2k and translate the function

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

2 ⋅ f (2k−1) + 2k if k > 0.

23/29



Recurrence Trees - Example - Draw the tree

Under assumption n = 2k

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

2 ⋅ f (2k−1) + 2k if k > 0.

We notice that the arity of the tree is 2.

24/29



Recurrence Trees - Example - Find the number of levels

Under assumption n = 2k

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

2 ⋅ f (2k−1) + 2k if k > 0.

Thumb rule

If each recursive call cuts the function argument (n) by a factor of
b, then the tree depth is logb(n), number of levels is logb(n) + 1.

25/29



Recurrence Trees - Example - Penalty at each level

Under assumption n = 2k

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

2 ⋅ f (2k−1) + 2k if k > 0.

We notice the penalty at each single call.

26/29



Recurrence Trees - Example - Penalty at each level

Under assumption n = 2k

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

2 ⋅ f (2k−1) + 2k if k > 0.

We notice the penalty at each single call.

27/29



Recurrence Trees - Example - Sum up the penalties

Under assumption n = 2k

f (2k) △=
⎧⎪⎪⎨⎪⎪⎩

1 if k = 0

2 ⋅ f (2k−1) + 2k if k > 0.

We sum up the penalties over all the levels and obtain a guess:

A guess

f (2k) = ∑L−1
i=0 penaltyi = (k + 1) ⋅ 2k = Θ(k ⋅ 2k)

28/29



Recurrence Trees - Example - Generalize to all n ∈ N+

We use our good old lemmas 7.2,7.3 in order to generalize the
bound to all n ∈ N+

Lemma 7.2, 7.3 justification

1 Clearly f (n),g(n) are monotonous non-decreasing.

2
g(2k+1)
g(2k) = (k+1)⋅2

k+1

k ⋅2k = (k+1)⋅2⋅2
k

k ⋅2k = 2 + 2
k is bounded by 2 and 4.

Since we proved that f (2k) = Θ(k ⋅ 2k), the lemmas imply that
f (n) = Θ(n ⋅ log(n))

29/29


