
Digital Logic Systems
Recitation 10: Signed Addition, Synchronous Circuits and

Flip-Flops

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 20, 2019

1/28



Project Remarks

1 Read the forum, good question are being asked there.

2 Check that your file is uploaded with a proper filename.

2/28



Recall - Combinational Circuits

Combinational circuits we saw (before addition)

1 Basic combinational gates (AND2, OR2, MUX2:1,...)

2 MUX(n:1)

3 Shifters (cyclic, logical, arith.) - move input by ⟨s⃗a⟩ places

4 Decoders n bits→ 2n bits

5 Encoders (and priority encoder) 2n bits→ n bits

Design approaches

1 Divide and conquer - recursively split the input

2 Flat - Usage of black boxes and smart wiring

Tips

1 Modularity is the key!

2 Evolution - begin with a naive design, and try improving it

3/28



Recall - Binary Adders

We saw 3 different implementations of binary adder

1 RCA(n) - cheap and intutitive design, but has a linear delay

2 CSA(n) - is slightly more expensive but as a logarithmic delay

3 COMP-ADDER(n) - outputs T and S. Cheaper than CSA, the
delay remained logarithmic

4/28



Signed Addition

Signed addition warm-up:

1 We must define a representation of a signed integer.

2 We must be able to implement addition/subtraction of
signed integers.

3 Can we use the same circuitry for adding unsigned and
signed integers?

5/28



Signed number representation - Two’s Complement

We denote the number represented in two’s complement
representation by A[n − 1 ∶ 0] as follows:

[A[n − 1 ∶ 0]]
△

= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.

We denote the set of signed numbers that are representable in
two’s complement representation using n-bit binary strings by Tn.

The Set Tn

Tn = {−2n−1,−2n−1 + 1, . . . ,2n−1 − 1} .

Example

T32 = {−2147483648, ...,2147483647} which should remind you of
the limits of int variables, compiled for 32-bit machines.

6/28



Two’s Complement - Sign bit, Sign extension & Negation

Claim (MSB determines the sign)

[A[n − 1 ∶ 0]] < 0 ⇐⇒ A[n − 1] = 1.

Claim (Sign-Extension)

If A[n] = A[n − 1], then

[A[n ∶ 0]] = [A[n − 1 ∶ 0]] .

Corollary (Sign-Extension)

[A[n − 1]∗ ○A[n − 1 ∶ 0]] = [A[n − 1 ∶ 0]] .

Claim (Negation)

− [A[n − 1 ∶ 0]] = [inv(A[n − 1 ∶ 0])] + 1

7/28



Comparison between representation methods

binary string X⃗ ⟨X⃗ ⟩ 2’s comp 1’s comp sign-mag

000 0 0 0 +0
001 1 1 1 1
010 2 2 2 2
011 3 3 3 3
100 4 −4 −3 −0
101 5 −3 −2 −1
110 6 −2 −1 −2
111 7 −1 0 −3

symmetric range: one’s complement and sign-magnitude.

two representations for zero: one’s complement and
sign-magnitude.

8/28



Signed Arithmetic Circuits

So far, we’ve defined a representation of signed integers and had a
few observations about it.
It is now time to design the two’s complement arithmetic logic.
Our design will follow the next procedure:

1 Define a reduction of two’s complement to a binary addition

2 Detect overflow and the sign of the sum.

3 Construct a signed adder s-adder(n)

4 Extend the s-adder(n) to adder/subtractor add-sub(n)

9/28



Reduction of two’s comp addition to binary addition

Theorem

Let C [n − 1] denote the carry-bit in position [n − 1] associated
with the binary addition described in Equation 16.1 and let

z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] + C [0].

Then,

C [n] − C [n − 1] = 1 Ô⇒ z < −2n−1 (1)

C [n − 1] − C [n] = 1 Ô⇒ z > 2n−1 − 1 (2)

z ∈ Tn ⇐⇒ C [n] = C [n − 1] (3)

z ∈ Tn Ô⇒ z = [S[n − 1 ∶ 0]] . (4)

10/28



Example

[A[3 ∶ 0]] −3 −4 −6 7
[B[3 ∶ 0]] −5 −5 5 1
C [0] 1 0 0 1

C [n] 1 1 1 0
C [n − 1] 1 0 1 1
[S[n − 1 ∶ 0]] −7 7 −1 −7
z −7 −9 −1 9

11/28



Detecting overflow

Overflow - the sum of signed numbers is not in Tn.

Definition

Let z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] + C [0]. The signal ovf is
defined as follows:

ovf
△

=

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if z /∈ Tn

0 otherwise.

the term “out-of-range” is more appropriate than “overflow”
(which suggests that the sum is too big). Favor tradition...

Claim

ovf = xor(C [n − 1],C [n]).

12/28



Determining the sign of the sum

Definition

The signal neg is defined as follows:

neg
△

=

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if z < 0

0 if z ≥ 0.

brute force method:

neg =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

S[n − 1] if no overflow

1 if C [n] − C [n − 1] = 1

0 if C [n − 1] − C [n] = 1.

(5)

Claim

The neg signal determines the sign of the correct sum (z) even in
case of an overflow. Its function can be expressed as follows:

neg = xor3(A[n − 1],B[n − 1],C [n])

13/28



A two’s-complement adder

Definition

A two’s-complement adder with input length n is a combinational
circuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C [0] ∈ {0,1}.

Output: S[n − 1 ∶ 0] ∈ {0,1}n and neg,ovf ∈ {0,1}.

Functionality: Define z as follows:

z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] + C [0].

The functionality is defined as follows:

z ∈ Tn Ô⇒ [S[n − 1 ∶ 0]] = z

z ∈ Tn ⇐⇒ ovf = 0

z < 0 ⇐⇒ neg = 1.

We denote a two’s-complement adder by s-adder(n).

14/28



A two’s complement adder s-adder(n)

C[n]

xor

C[n− 1]

ovf

adder(n)

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]C[n]

C[0]

C[n]A[n− 1]

neg

B[n− 1]

xor3

In an arithmetic logic unit (ALU), one may use the same circuit for
signed addition and unsigned addition.

15/28



A two’s complement adder/subtractor

Definition

A two’s-complement adder/subtractor with input length n is a
combinational circuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and sub ∈ {0,1}.

Output: S[n − 1 ∶ 0] ∈ {0,1}n and neg,ovf ∈ {0,1}.

Functionality: Define z as follows:

z
△

= [A[n − 1 ∶ 0]] + (−1)sub
⋅ [B[n − 1 ∶ 0]] .

The functionality is defined as follows:

z ∈ Tn Ô⇒ [S[n − 1 ∶ 0]] = z

z ∈ Tn ⇐⇒ ovf = 0

z < 0 ⇐⇒ neg = 1.

We denote a two’s-complement adder/subtractor by add-sub(n).
16/28



An implementation of an add-sub(n)

S[n− 1 : 0]

ovf,neg

s-adder(n)

xor(n)

B[n− 1 : 0]

sub

A[n− 1 : 0]

Claim

The implementation of add-sub(n) is correct.

17/28



Exam Fall-2011, Question B

18/28



Exam Fall-2011, Question B - Answer

Explanation

The duplication of z[n − 1] extends the sign of z for n + 1 bits.
The circuit will never output overflow and its correctness is
according to the claim proved in class −[A] = [Ā] + 1.

19/28



Exam Fall-2014 Moed B, Question 1

20/28



Exam Fall-2014 Moed B, Question 1 - Answer

Asymptotic delay and cost

d(Cn) = Θ(log(n)) and c(Cn) = Θ(nlog(n)). Both were dictated
by the dominant module - the adder.

21/28



Synchronous Circuits

Synchronous Circuits

22/28



Synchronous Circuits - Attributes

1 Consist of combinational circuits and flip-flops (FFs)

2 Can contain cycles, as long as the underlying combinational
circuits are still acyclic.

3 Must contain a special CLK input, which should be fed to all
FFs

23/28



Synchronous Circuits - Time

1 We introduce discrete time
2 The time is dictated by a very special signal CLK∈{0,1}. This

signal is given automatically, you don’t have to worry about
generating it. Just don’t forget to connect it to the required
elements (FFs).

3 Each rising-edge of CLK advances the time to the next clock
cycle.

4 The inputs are now time-dependent: No more X ,Y ,Z . In
synchronous circuits we deal with X (t),Y (t),Z(t). The
”user” of a synchronous circuit can change these inputs every
clock cycle.

5 Don’t confuse between the time indices and the string indices.

Example

X [i](t) is the value of the binary string X at index i at time t.

X [2](3) is the value of the binary string X at index 2 at time
3.

24/28



Edge-triggered flip-flop

Definition (edge-triggered flip-flop)

Inputs: D(t) and a clock clk.

Output: Q(t).

Functionality: If D(t) is stable during the critical segment Ci , then
Q(t) = D(ti) during the interval (ti + tpd, ti+1 + tcont).

Cost of a Flip-Flop

The FFs have their own cost which is typically much more
expensive than combinational gates. Hence, a cost of a
synchronous circuit will consist of combinational price + FF price.

25/28



Timing diagram of a Flip Flop

The x-axis corresponds to time.
A green interval means that the signal is stable during this
interval.
A red interval means that the signal may be instable.
In order to sample the D(t) by the FF, D(t) must be stable
during the Ci , or in other words:
In order to sample the D(t) by the FF, D(t) must be stable
tsu seconds before the rising edge and until thold after it.

Ci Ai Ci+1 Ai+1

tpd

tcont tcont

clk

D(t)
tsu

thold

Q(t)

x

x

y

y

26/28



The Zero Delay Model

Simplified model for specifying and simulating the functionality of
circuits with flip-flops.

1 Transitions of all signals are instantaneous.

2 Combinational gates: tpd = tcont = 0.

3 Flip-flops satisfy:

tsu = ti+1 − ti ,

thold = tcont = tpd = 0.

4 This allows us to specify the functionality of a flip-flop in the
zero delay model as follows:

Q(t + 1) = D(t).

27/28



Clock enabled flip-flops (zero-delay model)

Definition

A clock enabled flip-flop is defined as follows.

Inputs: D(t),ce(t) ∈ {0,1} and a clock clk.

Output: Q(t) ∈ {0,1}.

Functionality:

Q(t + 1) =

⎧
⎪⎪
⎨
⎪⎪
⎩

D(t) if ce(t) = 1

Q(t) if ce(t) = 0.

28/28


