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Project Remarks

© Read the forum, good question are being asked there.
@ Check that your file is uploaded with a proper filename.
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Recall - Combinational Circuits

Combinational circuits we saw (before addition)
@ Basic combinational gates (AND2, OR2, MUX2:1,...)
@ MUX(n:1)
© Shifters (cyclic, logical, arith.) - move input by (sa) places
@ Decoders n bits— 2" bits
@ Encoders (and priority encoder) 2" bits— n bits
Design approaches
© Divide and conquer - recursively split the input
@ Flat - Usage of black boxes and smart wiring
Tips
© Modularity is the key!

@ Evolution - begin with a naive design, and try improving it
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Recall - Binary Adders

We saw 3 different implementations of binary adder
@ RCA(n) - cheap and intutitive design, but has a linear delay
@ CSA(n) - is slightly more expensive but as a logarithmic delay

© COMP-ADDER(n) - outputs T and S. Cheaper than CSA, the
delay remained logarithmic
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Signed Addition

Signed addition warm-up:
@ We must define a representation of a signed integer.

@ We must be able to implement addition/subtraction of
signed integers.

© Can we use the same circuitry for adding unsigned and
signed integers?
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Signed number representation - Two's Complement

We denote the number represented in two's complement
representation by A[n—1:0] as follows:

[A[n-1:0]]2-2""1. A[n-1]+(A[n-2:0]).

We denote the set of signed numbers that are representable in
two's complement representation using n-bit binary strings by T,.

T3p = {-2147483648, ...,2147483647} which should remind you of
the limits of int variables, compiled for 32-bit machines.
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Two's Complement - Sign bit, Sign extension & Negation

Claim (MSB determines the sign)
[A[n-1:0]]<0 <= A[n-1]=1.

Claim (Sign-Extension)
If A[n] = A[n-1], then

Corollary (Sign-Extension)
[A[n-1]* o A[n-1:0]]=[A[n-1:0]].

Claim (Negation)

~[A[n-1:0]] = [INV(A[n—1:0])] + 1
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Comparison between representation methods

binary string X H (

) ‘ 2's comp ‘ 1's comp ‘ sign-mag

000
001
010
011
100
101
110
111

@ symmetric range: one's complement and sign-magnitude.

~NOoO O A WN = O X

-1

+0

@ two representations for zero: one’s complement and

sign-magnitude.

8/28



Signed Arithmetic Circuits

So far, we've defined a representation of signed integers and had a
few observations about it.

It is now time to design the two's complement arithmetic logic.
Our design will follow the next procedure:

@ Define a reduction of two's complement to a binary addition
@ Detect overflow and the sign of the sum.

@ Construct a signed adder s-ADDER(n)

© Extend the S-ADDER(n) to adder/subtractor ADD-SUB(n)
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Reduction of two's comp addition to binary addition

Theorem

Let C[n—1] denote the carry-bit in position [n— 1] associated
with the binary addition described in Equation 16.1 and let

z=[A[n-1:0]]+[B[n-1:0]]+ C[O].

Then,
C[n]-C[n-1]=1 — z< -2t
C[n-1]-C[n]=1 — z>2"t o1
zeT, <= (C[n]=C[n-1]
zeT, — z=[S[n-1:0]].
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Detecting overflow

Overflow - the sum of signed numbers is not in T,,.

Let z=[A[n-1:0]]+[B[n-1:0]]+ C[0]. The signal OVF is
defined as follows:

0 otherwise.

A{1 if ¢ T,
OVF =

the term “out-of-range” is more appropriate than “overflow”
(which suggests that the sum is too big). Favor tradition...

OVF = XOR(C[n-1], C[n]).
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Determining the sign of the sum

Definition

The signal NEG is defined as follows:

A1 ifz<0
0 ifz>0.

brute force method:
S[n-1] if no overflow
NEG =141 if C[n]-C[n-1]=
0 if C[n-1]-C[n]=

The NEG signal determines the sign of the correct sum (z) even in
case of an overflow. lIts function can be expressed as follows:
NEG = XOR3(A[n-1],B[n-1],C[n])
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A two's-complement adder

A two's-complement adder with input length n is a combinational
circuit specified as follows.
Input: A[n—1:0],B[n-1:0]€{0,1}", and C[0] € {0,1}.
Output: S[n-1:0]€{0,1}" and NEG, OVF € {0, 1}.

Functionality: Define z as follows:
z=[A[n-1:0]]+[B[n-1:0]]+ C[0].
The functionality is defined as follows:

zeT, = [S[n-1:0]]=z
zeT, <= OVF=0

z<0 <= NEG=1.

We denote a two's-complement adder by S-ADDER(n).
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A two's complement adder S-ADDER(n)

Aln—1] Bn—1] Cn] C[n‘f 1] C[‘n] A[nf‘lz(l] B[nf‘lz()]

XORj3 XOR

— C[0]

ADDER(n)

NEG OVF Cln] S[n—1:0]

In an arithmetic logic unit (ALU), one may use the same circuit for
signed addition and unsigned addition.
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A two's complement adder/subtractor

A two's-complement adder/subtractor with input length n is a
combinational circuit specified as follows.

Input: A[n—1:0],B[n-1:0]€{0,1}", and sube {0,1}.
Output: S[n-1:0]€{0,1}" and NEG,OVF € {0,1}.

Functionality: Define z as follows:
Z2[A[n=1:0]]+(-1)*“P.[B[n-1:0]].
The functionality is defined as follows:

zeT, = |[S[n-1:0]]=z2
zeT, <= OVF=0

z<0 <= NEG-=1.

We denote a two's-complement adder/subtractor by ADD-SUB(n).
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An implementation of an ADD-SUB(n)

sub
An—1:0] Bln—1:0]

|

XOR(n)

OVF, NEG
Sn—1:0]

The implementation of ADD-SUB(n) is correct.
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Exam Fall-2011, Question B

NN AN = 1:0] P 5Y 2-5 25w noowa 3s8»PNN 190N P 7). .a
JAIn—1:0]] £ -2t Aln— 1] + T2 A[L] - 2

nINn VY LA[n — 1: 0] € {0,1}* NN 1NNV SN SY 1D 1Y
:w> B[n:0] € {0,131

18] = —[4]

.0V n+1 v VY2 DOV N YW VYDAV 2V 1Y
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Exam Fall-2011, Question B - Answer

A[n-1:0]
INV(n)
z[n-1:0
: [n-1:0] oM
z[n-1{ +m1
—sub=0
ADD-SUB(n+1)

Explanation

The duplication of z[n— 1] extends the sign of z for n+ 1 bits.
The circuit will never output overflow and its correctness is

according to the claim proved in class —-[A] = [A] + 1.
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Exam Fall-2014 Moed B, Question 1

('21.30) 1% 2avn — 1 A9%Rw

:(n>5 22 117) X327 09N 292 1M Cy 2awnn

x[n—1:0] € {0,1}" :ubp

y[n—1:0] € {0,1}", ovf,neg € {0,1} :u%»

(2-2 D%wn NL WA X HY AXPRT woNT 93 31) z £ 31 - [x [n—1: 0]] X2 DI Z DR PTA cPRIPEPND
if z€{=2""1, .., 2"t — 1} then[y] = [z] X0y 2w nopbna anTan

a1 ovf,neg YW MR

. (1 ifz<0
neg = X
0 otherwise
. 1 l‘flﬁ{—2”_1,....2“_1—1}
ovf £ : n—-1 n-1
0 ifze{-2"1..,2 -1}
(11 P °10 Py MR awn? Moty ay)  .Cy 23ni YW 0122 npod 17X (60%) X
X Y02 MK aNw MY 293 Cy 23377 i nX12wn (15%) 2
X 7P MR DN MY *93 Cu 23907 Nawa nX 12w (15%) .7
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Exam Fall-2014 Moed B, Question 1 - Answer

x[n-1:0]

N\_/ sub=1
ADD-SUB(n+5)

z[n+4:0]
z[n+4:n-1] 6
All Zero
g)]es ;I;ster x[n-1 ]
OVF y[n-1:01 NEG
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Synchronous Circuits

Synchronous Circuits
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Synchronous Circuits - Attributes

@ Consist of combinational circuits and flip-flops (FFs)

@ Can contain cycles, as long as the underlying combinational
circuits are still acyclic.

© Must contain a special CLK input, which should be fed to all

FFs
Synchronous Circuit
- x Combinetorsl >
w 2
Q D
D-FF
CLK(t)
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Synchronous Circuits - Time

@ We introduce discrete time

@ The time is dictated by a very special signal CLKe{0,1}. This
signal is given automatically, you don't have to worry about
generating it. Just don't forget to connect it to the required
elements (FFs).

© Each rising-edge of CLK advances the time to the next clock
cycle.

© The inputs are now time-dependent: No more X, Y,Z. In
synchronous circuits we deal with X(t), Y(t),Z(t). The
"user" of a synchronous circuit can change these inputs every
clock cycle.

© Don’t confuse between the time indices and the string indices.

e X[i](t) is the value of the binary string X at index i at time t.

@ X[2](3) is the value of the binary string X at index 2 at time
3.
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Edge-triggered flip-flop

Definition (edge-triggered flip-flop)

Inputs: D(t) and a clock CLK.
Output: Q(t).
Functionality: If D(t) is stable during the critical segment C;, then
Q(t) = D(t;) during the interval (t; + tpqg, tis1 + teont)
D

'

FF

CLK —&~|

Cost of a Flip-Flop

The FFs have their own cost which is typically much more
expensive than combinational gates. Hence, a cost of a
synchronous circuit will consist of combinational price + FF price.
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Timing diagram of a Flip Flop

The x-axis corresponds to time.

A green interval means that the signal is stable during this
interval.

A red interval means that the signal may be instable.

In order to sample the D(t) by the FF, D(t) must be stable
during the C;, or in other words:

@ In order to sample the D(t) by the FF, D(t) must be stable
tsy seconds before the rising edge and until tj.y after it.

Ci A; Cit1 Aita

by +—
D(t)
—* thold
4’ teont —®tcont
Q) I : | - T
-

pd
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The Zero Delay Model

Simplified model for specifying and simulating the functionality of
circuits with flip-flops.

@ Transitions of all signals are instantaneous.
@ Combinational gates: t,q = teont = 0.
© Flip-flops satisfy:
Loy = tjs1 — &,
thold = teont = tpa = 0.

@ This allows us to specify the functionality of a flip-flop in the
zero delay model as follows:

Q(t+1) = D(t).
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Clock enabled flip-flops (zero-delay model)

A clock enabled flip-flop is defined as follows.
Inputs: D(t),CE(t) € {0,1} and a clock CLK.
Output: Q(t) € {0,1}.

Functionality:

_|D(t) ifcE(t)=1
Qe+1)= {Q(t) if oR(t) = 0.
[
(;];EK: CE-FF
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