
Digital Logic Systems
Recitation 12: Synchronous Circuits: Finite State Machines,

Analysis and Synthesis. ISA of DLX

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

June 3, 2019

1/20



Finite State Machines

Definition

A finite state machine (FSM) is a 6-tuple A = ⟨Q,Σ,∆, δ, λ,q0⟩,
where

Q is a set of states.

Σ is the alphabet of the input.

∆ is the alphabet of the output.

δ ∶ Q ×Σ→ Q is a transition function.

λ ∶ Q ×Σ→∆ is an output function.

q0 ∈ Q is an initial state.

2/20



The Canonic Form of a Synchronous Circuit

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN
OUT

S NS

Figure: A synchronous circuit in canonic form.

3/20



Synthesis and Analysis

Two tasks are often associated with synchronous circuits:

1 Analysis: given a synchronous circuit S , describe its
functionality by an FSM.

2 Synthesis: given an FSM A, design a synchronous circuit S
that implements A.

This is somewhat similar to what we already did:

Figure: A synchronous circuit in canonic form.

4/20



Synthesis and Analysis

Two tasks are often associated with synchronous circuits:

1 Analysis: given a synchronous circuit S , describe its
functionality by an FSM.

2 Synthesis: given an FSM A, design a synchronous circuit S
that implements A.

This is somewhat similar to what we already did:

Figure: A synchronous circuit in canonic form.

4/20



Analysis

The task of analyzing a synchronous circuit S is carried out as
follows.

1 Define the FSM A = ⟨Q,Σ,∆, δ, λ,q0⟩ as follows.

1 The set of states is Q
△

= {0,1}k , where k denotes the number
of flip-flops in S .

2 Define the initial state q0 to be the initial outputs of the
flip-flops.

3 Σ = {0,1}`, where ` denotes the number of input gates in S .
4 ∆ = {0,1}r , where r denotes the number of output gates in S .
5 Transform S to a functionally equivalent synchronous circuit S̃

in canonic form. Compute the truth tables of the
combinational circuits λ and δ. Define the Boolean functions
according to these truth tables.

5/20



Synthesis

Given an FSM A = ⟨Q,Σ,∆, δ, λ,q0⟩, the task of designing a
synchronous circuit S that implements A is carried out as follows.

1 Encode Q,Σ and ∆ by binary strings. Formally, let f ,g ,h
denote one-to-one functions, where

f ∶Q → {0,1}k

g ∶Σ→ {0,1}`

h ∶∆→ {0,1}r .

2 Design a combinational circuit Cδ that implements the
(partial) Boolean function Bδ ∶ {0,1}k × {0,1}` → {0,1}k

defined by

Bδ(f (x),g(y))
△

= f (δ(x , y)), for every (x , y) ∈ Q ×Σ.

6/20



Synthesis (cont.)

3 Design a combinational circuit Cλ that implements the
(partial) Boolean function Bλ ∶ {0,1}k × {0,1}` → {0,1}r

defined by

Bλ(f (x),g(z))
△

= f (λ(x , z)), for every (x , z) ∈ Q ×Σ.

4 Let S denote the synchronous circuit in canonic form
constructed from k flip-flops and the combinational circuits
Cδ for the next state and Cλ for the output.

7/20



Synthesis - how to encode the states?

Let S denote the synchronous circuit in canonic form constructed
from k flip-flops and the combinational circuits Cδ for the next
state and Cλ for the output.
The description of the encoding step leaves a great deal of
freedom. Since ∣{0,1}k ∣ ≥ ∣Q ∣, it follows that k ≥ log2 ∣Q ∣, and
similar bounds apply to ` and r . However, it is not clear that using
the smallest lengths is the best idea. Certain encodings lead to
more complicated Boolean functions Bδ and Bλ. Thus, the
question of selecting a “good” encoding is a very complicated task,
and there is no simple solution to this problem.

8/20



Analysis Question

Analyze the circuit shift-register(2)

i.e. draw a state diagram of the corresponding FSM.

(a) Shift-Reg(2)

00

10 11

01

(0, 0)

(1, 0)

(1, 0)
(0, 0)

(1, 1)

(1, 1)

(0, 1)

(0, 1)

(b) FSM(Shift-Reg(2)) Which is an im-
portant graph called De Bruijn Graph 9/20



Synthesis Question

Design a synchronous circuit S that satisfies the following:

Input: x(t), y(t) ∈ {0,1}, for every clock cycle t.

Output: EQ(t),LT (t),GT (t) ∈ {0,1}, for every clock cycle t.

Functionality: Let Xt
△

= ⟨x(t), ..., x(0)]⟩, Yt
△

= ⟨y(t), ..., y(0)⟩
For every clock cycle t ≥ 0:

EQ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if Xt = Yt ,

0, otherwise .

LT (t) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if Xt < Yt ,

0, otherwise .

GT (t) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if Xt > Yt ,

0, otherwise .

1 FSM(S) - Define the finite state machine
FSM(S) = ⟨Q,Σ,∆, δ, λ,q0⟩ that satisfies the specification.

2 Synthesize S - Implement S by synthesizing FSM(S).
10/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB

Observation 2: Outputs at time t depend on inputs at time t.
What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time

Just the relation between Xt−1 and Yt−1.

Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB
Observation 2: Outputs at time t depend on inputs at time t.

What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time

Just the relation between Xt−1 and Yt−1.

Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB
Observation 2: Outputs at time t depend on inputs at time t.
What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time

Just the relation between Xt−1 and Yt−1.

Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB
Observation 2: Outputs at time t depend on inputs at time t.
What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time
Just the relation between Xt−1 and Yt−1.

Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB
Observation 2: Outputs at time t depend on inputs at time t.
What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time

Just the relation between Xt−1 and Yt−1.

Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB
Observation 2: Outputs at time t depend on inputs at time t.
What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time
Just the relation between Xt−1 and Yt−1.

Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Understand the required behavior

5 4 3 2 1 0 t

0 0 1 1 1 0 x(t)
Inputs0 1 1 0 1 0 y(t)

14 14 14 6 2 0 Xt
△

= ⟨x(t), ..., x(0)]⟩
Interpretation

26 26 10 2 2 0 Yt
△

= ⟨y(t), ..., y(0)⟩

0 0 0 0 1 1 EQ(t)

Outputs1 1 0 0 0 0 LT(t)
0 0 1 1 0 0 GT(t)

Observation 1: The inputs are streamed from the LSB ⇒MSB
Observation 2: Outputs at time t depend on inputs at time t.
What will our circuit need to “memorize” to be able to
determine the output at time t?

All the input bits from time 0? Namely {x(τ), y(τ)}t−1τ=0

Bad, the required information grows with time
Just the relation between Xt−1 and Yt−1.
Good, only 3 options “equal” “less than” “greater than”

11/20



FSM - Declare the states and the encodings

Let’s Describe the FSM(S) = ⟨Q,Σ,∆, δ, λ,q0⟩ and also
provide the encodings:

Q
△

= {0,1}2 - the states
00 for Xt = Yt (The “EQ” state)
01 for Xt < Yt (The “LT” state)
10 for Xt > Yt (The “GT” state)

Σ
△

= {0,1}2 - the input alphabet.
The two inputs x(t), y(t) are simply concatenated together.

∆
△

= {0,1}3 - the output alphabet
100 for EQ(t)
010 for LT(t)
001 for GT(t)
q0 is 00, (The equality state)

12/20



FSM - State Diagram

Let’s Describe the FSM(S) = ⟨Q,Σ,∆, δ, λ,q0⟩
δ - state-transfer function, receives the current input and the
current state and returns the next state.
λ - output-function, receives the current input and the current
state and returns the current output.
We describe the two functions using a state diagram:

13/20



Synthesis - Recovering truth table of δ and λ from FSM

Translate each state into 4 rows of the table.
Note that S[1 ∶ 0] = 11 is an inaccessible state.

Current State S[1] S[0] x y NS[1] NS[0] EQ LT GT

0 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 1 1 0 0 1 0 0

0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 0 1
0 1 1 1 0 1 0 1 0

1 0 0 0 1 0 0 0 1
1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 1 1 0 0 0 1

14/20



Synthesis - Implementing Cδ (skipping truth table)

The Cδ - state-transfer circuit receives the IN = x(t) ○ y(t)
and the current state S and outputs the next state NS .
We can derive the Cδ formulas directly from the FSM(S):
NS = 00⇔ S = 00 and x(t) = y(t)
NS = 01⇔ x(t) < y(t) or (S = 01 and x(t) = y(t))
NS = 10⇔ x(t) > y(t) or (S = 10 and x(t) = y(t))

15/20



Synthesis - Implementing Cδ

We can derive the Cδ formulas from the FSM(S):
NS = 00⇔ S = 00 and x(t) = y(t)
NS = 01⇔ x(t) < y(t) or (S = 01 and x(t) = y(t))
NS = 10⇔ x(t) > y(t) or (S = 10 and x(t) = y(t))
We further provide the boolean function per each flip-flop:
NS[0] = x̄ ⋅ y + (S[1] ⋅ S[0] ⋅NXOR(x , y))
NS[1] = x ⋅ ȳ + (S[1] ⋅ S[0] ⋅NXOR(x , y))

16/20



Synthesis - Implementing Cλ (skipping truth table)

The Cλ - output circuit receives the IN = x(t) ○ y(t) and the
current state S and generates outputs EQ(t),LT(t),GT(t).
We can derive the Cλ formulas directly from the FSM(S):
EQ = 1⇔ S = 00 and x(t) = y(t)
LT = 1⇔ x(t) < y(t) or (S = 01 and x(t) = y(t))
GT = 1⇔ x(t) > y(t) or (S = 10 and x(t) = y(t))

17/20



Synthesis - Implementing Cλ

We can derive the Cλ formulas from the FSM(S):
EQ = 1⇔ S = 00 and x(t) = y(t)
LT = 1⇔ x(t) < y(t) or (S = 01 and x(t) = y(t))
GT = 1⇔ x(t) > y(t) or (S = 10 and x(t) = y(t))
We further provide the boolean function per each flip-flop:
EQ = S[0] ⋅ S[1] ⋅NXOR(x , y)
LT = x̄ ⋅ y + (S[1] ⋅ S[0] ⋅NXOR(x , y))
GT = x ⋅ ȳ + (S[1] ⋅ S[0] ⋅NXOR(x , y))

18/20



Synthesis - Putting it all together into S

Instantiate the Cδ and the Cλ circuits.

Add k flip-flops for the state storage.

19/20



RESAb3 simulator

RESAb3 software contains the text editor for writing the assembly
code, and the DLX simulator for running it.

1 Open the Resa program and choose a text editor.

2 Write a program in a text editor, and compile it to ensure that
it has no compilation errors. This should generate the “.cod”
file with the machine code.

3 File→New to open simulator window.

4 In the simulator window File→Open COD to load the machine
code.

5 Simulator→Add Watch to observe a particular memory cell.

6 Run→Run Until Halt to execute the whole program

20/20


