Digital Logic Systems

Recitation 12: Synchronous Circuits: Finite State Machines, Analysis and Synthesis. ISA of DLX

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

June 3, 2019

Finite State Machines

Definition

A finite state machine (FSM) is a 6-tuple $\mathcal{A} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$, where

- Q is a set of states.
- ullet Σ is the alphabet of the input.
- ullet Δ is the alphabet of the output.
- $\delta: Q \times \Sigma \to Q$ is a transition function.
- $\lambda: Q \times \Sigma \to \Delta$ is an output function.
- $q_0 \in Q$ is an initial state.

The Canonic Form of a Synchronous Circuit

Figure: A synchronous circuit in canonic form.

Synthesis and Analysis

Two tasks are often associated with synchronous circuits:

- **Analysis**: given a synchronous circuit *S*, describe its functionality by an FSM.
- **2 Synthesis**: given an FSM \mathcal{A} , design a synchronous circuit S that implements \mathcal{A} .

Synthesis and Analysis

Two tasks are often associated with synchronous circuits:

- Analysis: given a synchronous circuit *S*, describe its functionality by an FSM.
- **2 Synthesis**: given an FSM \mathcal{A} , design a synchronous circuit S that implements \mathcal{A} .

This is somewhat similar to what we already did:

Analysis

The task of analyzing a synchronous circuit S is carried out as follows.

- **1** Define the FSM $\mathcal{A} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$ as follows.
 - **1** The set of states is $Q \stackrel{\triangle}{=} \{0,1\}^k$, where k denotes the number of flip-flops in S.
 - **②** Define the initial state q_0 to be the initial outputs of the flip-flops.
 - **3** $\Sigma = \{0,1\}^{\ell}$, where ℓ denotes the number of input gates in S.
 - **a** $\Delta = \{0,1\}^r$, where r denotes the number of output gates in $S_{\tilde{r}}$
 - **Transform** S to a functionally equivalent synchronous circuit \tilde{S} in canonic form. Compute the truth tables of the combinational circuits λ and δ . Define the Boolean functions according to these truth tables.

Synthesis

Given an FSM $\mathcal{A} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$, the task of designing a synchronous circuit S that implements \mathcal{A} is carried out as follows.

1 Encode Q, Σ and Δ by binary strings. Formally, let f, g, h denote one-to-one functions, where

$$\begin{split} f: Q &\to \left\{0,1\right\}^k \\ g: \Sigma &\to \left\{0,1\right\}^\ell \\ h: \Delta &\to \left\{0,1\right\}^r. \end{split}$$

② Design a combinational circuit C_{δ} that implements the (partial) Boolean function $B_{\delta}: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^k$ defined by

$$B_{\delta}(f(x), g(y)) \stackrel{\triangle}{=} f(\delta(x, y)), \text{ for every } (x, y) \in Q \times \Sigma.$$

Synthesis (cont.)

3 Design a combinational circuit C_{λ} that implements the (partial) Boolean function $B_{\lambda}: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^r$ defined by

$$B_{\lambda}(f(x),g(z)) \stackrel{\triangle}{=} f(\lambda(x,z)), \text{ for every } (x,z) \in Q \times \Sigma.$$

4 Let S denote the synchronous circuit in canonic form constructed from k flip-flops and the combinational circuits C_{δ} for the next state and C_{λ} for the output.

Synthesis - how to encode the states?

Let S denote the synchronous circuit in canonic form constructed from k flip-flops and the combinational circuits C_{δ} for the next state and C_{λ} for the output.

The description of the encoding step leaves a great deal of freedom. Since $|\{0,1\}^k| \geq |Q|$, it follows that $k \geq \log_2 |Q|$, and similar bounds apply to ℓ and r. However, it is not clear that using the smallest lengths is the best idea. Certain encodings lead to more complicated Boolean functions B_δ and B_λ . Thus, the question of selecting a "good" encoding is a very complicated task, and there is no simple solution to this problem.

Analysis Question

Analyze the circuit shift-register(2)

i.e. draw a state diagram of the corresponding FSM.

(a) Shift-Reg(2)

(b) FSM(Shift-Reg(2)) Which is an important graph called De Bruijn Graph $_{\rm g}$

Synthesis Question

Design a synchronous circuit S that satisfies the following:

Input: $x(t), y(t) \in \{0,1\}$, for every clock cycle t.

Output: $EQ(t), LT(t), GT(t) \in \{0,1\}$, for every clock cycle t.

Functionality: Let $X_t \stackrel{\triangle}{=} \langle x(t), ..., x(0) \rangle$, $Y_t \stackrel{\triangle}{=} \langle y(t), ..., y(0) \rangle$

For every clock cycle $t \ge 0$:

$$EQ(t) = \begin{cases} 1, & \text{if } X_t = Y_t, \\ 0, & \text{otherwise}. \end{cases}$$

$$LT(t) = \begin{cases} 1, & \text{if } X_t < Y_t, \\ 0, & \text{otherwise}. \end{cases}$$

$$GT(t) = \begin{cases} 1, & \text{if } X_t < Y_t, \\ 0, & \text{otherwise}. \end{cases}$$

$$GT(t) = \begin{cases} 1, & \text{if } X_t > Y_t, \\ 0, & \text{otherwise}. \end{cases}$$

$$GT(t) = \begin{cases} 1, & \text{if } X_t > Y_t, \\ 0, & \text{otherwise.} \end{cases}$$

- FSM(S) Define the finite state machine $FSM(S) = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$ that satisfies the specification.
- **2** Synthesize S Implement S by synthesizing FSM(S).

5	4	3	2	1	0	t	
0	0	1	1	1	0	x(t)	1
0	1	1	0	1	0	y(t)	Inputs
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	1
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation
0	0	0	0	1	1	EQ(t)	
1	1	0	0	0	0	LT(t)	Outputs
0	0	1	1	0	0	GT(t)	

 \bullet Observation 1: The inputs are streamed from the LSB $\Rightarrow MSB$

5	4	3	2	1	0	t	
0	0	1	1	1	0	x(t)	Land
0	1	1	0	1	0	y(t)	Inputs
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	1
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation
0	0	0	0	1	1	EQ(t)	
1	1	0	0	0	0	LT(t)	Outputs
0	0	1	1	0	0	GT(t)	

- Observation 1: The inputs are streamed from the LSB \Rightarrow MSB
- ullet Observation 2: Outputs at time t depend on inputs at time t.

5	4	3	2	1	0	t	
0	0	1	1	1	0	x(t)	la a la
0	1	1	0	1	0	y(t)	Inputs
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	1
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation
0	0	0	0	1	1	EQ(t)	
1	1	0	0	0	0	LT(t)	Outputs
0	0	1	1	0	0	GT(t)	

- Observation 1: The inputs are streamed from the LSB ⇒MSB
- Observation 2: Outputs at time *t* depend on inputs at time *t*.
- What will our circuit need to "memorize" to be able to determine the output at time *t*?

5	4	3	2	1	0	t	
0	0	1	1	1	0	x(t)	
0	1	1	0	1	0	y(t)	Inputs
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation
0	0	0	0	1	1	EQ(t)	
1	1	0	0	0	0	LT(t)	Outputs
0	0	1	1	0	0	GT(t)	

- Observation 1: The inputs are streamed from the LSB ⇒MSB
- Observation 2: Outputs at time t depend on inputs at time t.
- What will our circuit need to "memorize" to be able to determine the output at time t?
 - All the input bits from time 0? Namely $\{x(\tau), y(\tau)\}_{\tau=0}^{t-1}$

5	4	3	2	1	0	t	
0	0	1	1	1	0	x(t)	lmmuta
0	1	1	0	1	0	y(t)	Inputs
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	1
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation
0	0	0	0	1	1	EQ(t)	
1	1	0	0	0	0	LT(t)	Outputs
0	0	1	1	0	0	GT(t)	

- Observation 1: The inputs are streamed from the LSB ⇒MSB
- Observation 2: Outputs at time t depend on inputs at time t.
- What will our circuit need to "memorize" to be able to determine the output at time t?
 - All the input bits from time 0? Namely $\{x(\tau), y(\tau)\}_{\tau=0}^{t-1}$ Bad, the required information grows with time

5	4	3	2	1	0	t			
0	0	1	1	1	0	x(t)	1		
0	1	1	0	1	0	y(t)	Inputs		
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	1		
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation		
0	0	0	0	1	1	EQ(t)			
1	1	0	0	0	0	LT(t)	Outputs		
0	0	1	1	0	0	GT(t)			

- Observation 1: The inputs are streamed from the LSB ⇒MSB
- Observation 2: Outputs at time t depend on inputs at time t.
- What will our circuit need to "memorize" to be able to determine the output at time t?
 - All the input bits from time 0? Namely $\{x(\tau), y(\tau)\}_{\tau=0}^{t-1}$ Bad, the required information grows with time
 - Just the relation between X_{t-1} and Y_{t-1} .

5	4	3	2	1	0	t	
0	0	1	1	1	0	x(t)	
0	1	1	0	1	0	y(t)	Inputs
14	14	14	6	2	0	$X_t \stackrel{\triangle}{=} \langle x(t),, x(0) \rangle$	
26	26	10	2	2	0	$Y_t \stackrel{\triangle}{=} \langle y(t),, y(0) \rangle$	Interpretation
0	0	0	0	1	1	EQ(t)	
1	1	0	0	0	0	LT(t)	Outputs
0	0	1	1	0	0	GT(t)	-

- Observation 1: The inputs are streamed from the LSB ⇒MSB
- Observation 2: Outputs at time t depend on inputs at time t.
- What will our circuit need to "memorize" to be able to determine the output at time t?
 - All the input bits from time 0? Namely $\{x(\tau), y(\tau)\}_{\tau=0}^{t-1}$ Bad, the required information grows with time
 - Just the relation between X_{t-1} and Y_{t-1} . Good, only 3 options "equal" "less than" "greater than"

FSM - Declare the states and the encodings

- Let's Describe the $FSM(S) = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$ and also provide the encodings:
 - $Q \triangleq \{0,1\}^2$ the states 00 for $X_t = Y_t$ (The "EQ" state) 01 for $X_t < Y_t$ (The "LT" state) 10 for $X_t > Y_t$ (The "GT" state)
 - $\Sigma \triangleq \{0,1\}^2$ the input alphabet. The two inputs x(t), y(t) are simply concatenated together.
 - $\Delta \stackrel{\triangle}{=} \{0,1\}^3$ the output alphabet 100 for EQ(t) 010 for LT(t) 001 for GT(t)
 - q_0 is 00, (The equality state)

FSM - State Diagram

- Let's Describe the $FSM(S) = \langle Q, \Sigma, \Delta, \frac{\delta}{\delta}, \lambda, q_0 \rangle$
- \bullet δ state-transfer function, receives the current input and the current state and returns the next state.
- λ output-function, receives the current input and the current state and returns the current output.
- We describe the two functions using a state diagram:

Synthesis - Recovering truth table of δ and λ from FSM

Translate each state into 4 rows of the table. Note that S[1:0] = 11 is an inaccessible state.

Current State	S[1]	S[0]	Х	у	NS[1]	NS[0]	EQ	LT	GT
(Ø,0),(1,0,0)	0	0	0	0	0	0	1	0	0
(1,1),(1,0,0)	0	0	0	1	0	1	0	1	0
00,1,00	0	0	1	0	1	0	0	0	1
1.0 GT (0,7,0)	0	0	1	1	0	0	1	0	0
	0	1	0	0	0	1	0	1	0
(0,0),(0,1,0) (1,1),(0,1,0)	0	1	0	1	0	1	0	1	0
to GT (0,1),(0,1,0)	0	1	1	0	1	0	0	0	1
(1,0),(0,0,1)	0	1	1	1	0	1	0	1	0
(פלט),(קלט)	1	0	0	0	1	0	0	0	1
(0,0),(0,0,1) to LT (0,1),(0,1,0)	1	0	0	1	0	1	0	1	0
(1,1),(0,0,1) (10 "GT"	1	0	1	0	1	0	0	0	1
(1,0),(0,0,1)	1	0	1	1	1	0	0	0	1
					I				14/:

Synthesis - Implementing C_{δ} (skipping truth table)

- The C_{δ} state-transfer circuit receives the $IN = x(t) \circ y(t)$ and the current state S and outputs the next state NS.
- We can derive the C_{δ} formulas directly from the FSM(S):

$$NS = 00 \Leftrightarrow S = 00 \text{ and } x(t) = y(t)$$
 $NS = 01 \Leftrightarrow x(t) < y(t) \text{ or } (S = 01 \text{ and } x(t) = y(t))$
 $NS = 10 \Leftrightarrow x(t) > y(t) \text{ or } (S = 10 \text{ and } x(t) = y(t))$

$$(0,0),(1,0,0)$$

$$(1,1),(1,0,0)$$

$$(0,0),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,0,1)$$

$$(1,1),(0,1,0)$$

$$(0,1),(0,1,0)$$

$$(0,1),(0,1,0)$$

(1,0),(0,0,1)

(1,0),(0,0,1)

Synthesis - Implementing C_{δ}

• We can derive the C_{δ} formulas from the FSM(S):

$$NS = 00 \Leftrightarrow S = 00 \text{ and } x(t) = y(t)$$

 $NS = 01 \Leftrightarrow x(t) < y(t) \text{ or } (S = 01 \text{ and } x(t) = y(t))$
 $NS = 10 \Leftrightarrow x(t) > y(t) \text{ or } (S = 10 \text{ and } x(t) = y(t))$

• We further provide the boolean function per each flip-flop: $NS[0] = \bar{x} \cdot y + (\overline{S[1]} \cdot S[0] \cdot NXOR(x, y))$

$$NS[1] = x \cdot \overline{y} + (S[1] \cdot \overline{S[0]} \cdot NXOR(x, y))$$

Synthesis - Implementing C_{λ} (skipping truth table)

- The C_{λ} output circuit receives the $IN = x(t) \circ y(t)$ and the current state S and generates outputs EQ(t),LT(t),GT(t).
- We can derive the C_{λ} formulas directly from the FSM(S):

We can derive the
$$C_{\lambda}$$
 formulas directly from the FSM(S) $EQ = 1 \Leftrightarrow S = 00$ and $x(t) = y(t)$ $LT = 1 \Leftrightarrow x(t) < y(t)$ or $(S = 01 \text{ and } x(t) = y(t))$ $GT = 1 \Leftrightarrow x(t) > y(t)$ or $(S = 10 \text{ and } x(t) = y(t))$ $(0,0),(1,0,0)$

Synthesis - Implementing C_{λ}

• We can derive the C_{λ} formulas from the FSM(S):

$$EQ = 1 \Leftrightarrow S = 00 \text{ and } x(t) = y(t)$$

 $LT = 1 \Leftrightarrow x(t) < y(t) \text{ or } (S = 01 \text{ and } x(t) = y(t))$
 $GT = 1 \Leftrightarrow x(t) > y(t) \text{ or } (S = 10 \text{ and } x(t) = y(t))$

• We further provide the boolean function per each flip-flop: $EQ = \overline{S[0]} \cdot \overline{S[1]} \cdot NXOR(x, y)$

$$LT = \bar{x} \cdot y + (\overline{S[1]} \cdot \underline{S[0]} \cdot NXOR(x, y))$$

$$GT = x \cdot \bar{y} + (S[1] \cdot \overline{S[0]} \cdot NXOR(x, y))$$

Synthesis - Putting it all together into *S*

- Instantiate the C_{δ} and the C_{λ} circuits.
- Add *k* flip-flops for the state storage.

RESAb3 simulator

RESAb3 software contains the **text editor** for writing the assembly code, and the **DLX simulator** for running it.

- Open the Resa program and choose a text editor.
- Write a program in a text editor, and compile it to ensure that it has no compilation errors. This should generate the ".cod" file with the machine code.
- § File→New to open simulator window.
- In the simulator window File→Open COD to load the machine code.
- Simulator→Add Watch to observe a particular memory cell.
- Run→Run Until Halt to execute the whole program